首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Aquatic communities are structured by multiple forces, and identifying the driving factors over multispatial scales is an important research issue. The East Asian monsoon region is globally one of the richest environments in terms of biodiversity, and is undergoing rapid human development, yet the river ecosystems in this region have not been well studied. We applied a hierarchical framework to incorporate regional and local environmental effects on stream macroinvertebrate communities in this region. The knowledge gained is expected to improve the understanding of the importance of spatial scale on regional and local diversity in the East Asian monsoon region. 2. A national data set of benthic macroinvertebrates and environmental variables (geographical, land‐use, hydrological, substratum and physicochemical elements) in Korean rivers was used to determine the habitat preferences of macroinvertebrates. 3. Latitude, proportion of forest coverage, riffle habitat, silt substratum and temperature were the most important determinants for the ordinations of macroinvertebrate communities in each category evaluated by canonical correspondence analysis (CCA). The optimal habitats for stream macroinvertebrates are not the same for all species, and overall community metrics and abundance of sensitive species tended to be lower in open agricultural and urban streams than in forested streams. The sensitivity of mayflies and stoneflies to anthropogenic disturbances implicated them as good indicators to assess the effects of urban and agricultural activities. 4. A partial CCA was used to evaluate the relative importance of macrohabitat and microhabitat variables on community composition at three spatial scales (whole country, the large Han River basin and two small sub‐basins in the lowlands and highlands). The majority of community variation (17–22% for each environmental element) was explained by macrohabitat variables at the regional spatial scale. In contrast, large proportions (15–18%) were explained by microhabitat variables at the local spatial scale. 5. Our findings indicate that the relative importance of habitat scales should be determined by geographical size and that comprehensive understanding of multispatial scale patterns can be important for implementing sound biodiversity conservation programmes.  相似文献   

2.
Urbanisation modifies landscapes at multiple scales, impacting the local climate and changing the extent and quality of natural habitats. These habitat modifications significantly alter species distributions and can result in increased abundance of select species which are able to exploit novel ecosystems. We examined the effect of urbanisation at local and landscape scales on the body size, lipid reserves and ovary weight of Nephila plumipes, an orb weaving spider commonly found in both urban and natural landscapes. Habitat variables at landscape, local and microhabitat scales were integrated to create a series of indexes that quantified the degree of urbanisation at each site. Spider size was negatively associated with vegetation cover at a landscape scale, and positively associated with hard surfaces and anthropogenic disturbance on a local and microhabitat scale. Ovary weight increased in higher socioeconomic areas and was positively associated with hard surfaces and leaf litter at a local scale. The larger size and increased reproductive capacity of N.plumipes in urban areas show that some species benefit from the habitat changes associated with urbanisation. Our results also highlight the importance of incorporating environmental variables from multiple scales when quantifying species responses to landscape modification.  相似文献   

3.
1. Numerous interacting abiotic and biotic factors influence niche use and assemblage structure of freshwater fishes, but the strength of each factor changes with spatial scale. Few studies have examined the role of interspecific competition in structuring stream fish assemblages across spatial scales. We used field and laboratory approaches to examine microhabitat partitioning and the effect of interspecific competition on microhabitat use in two sympatric stream fishes (Galaxias‘southern’ and Galaxias gollumoides) at large (among streams and among sites within streams) and small (within artificial stream channels) spatial scales. 2. Diurnal microhabitat partitioning and interspecific competition at large spatial scales were analysed among three sympatry streams (streams with allotopic and syntopic sites; three separate catchments) and four allopatry streams (streams with only allotopic sites; two separate catchments). Electro‐fishing was used to sample habitat use of fishes at 30 random points within each site by quantifying four variables for each individual: water velocity, depth, distance to nearest cover and substratum size. Habitat availability was then quantified for each site by measuring those variables at each of 50 random points. Diet and stable isotope partitioning was analysed from syntopic sites only. Diel cycles of microhabitat use and interspecific competition at small spatial scales were examined by monitoring water velocity use over 48 h in artificial stream channels for three treatments: (i) allopatric G. ‘southern’ (10 G. ‘southern’); (ii) allopatric G. gollumoides (10 G. gollumoides) and (iii) sympatry (five individuals of each species). 3. One hundred and ninety‐four G. ‘southern’ and 239 G. gollumoides were sampled across all seven streams, and habitat availability between the two species was similar among all sites. Galaxias‘southern’ utilised faster water velocities than G. gollumoides in both the field and in channel experiments. Both species utilised faster water velocities in channels at night than during the day. Diet differences were observed and were supported by isotopic differences (two of three sites). No interspecific differences were observed for the other three microhabitat variables in the field, and multivariate habitat selection did not differ between species. Interspecific competition had no effect on microhabitat use of either species against any variable either in the field (large scale) or in channels (small scale). 4. The results suggest that niche partitioning occurs along a subset of microhabitat variables (water velocity use and diet). Interspecific competition does not appear to be a major biotic factor controlling microhabitat use by these sympatric taxa at any spatial scale. The results further suggest that stream fish assemblages are not primarily structured by biotic factors, reinforcing other studies de‐emphasising interspecific competition.  相似文献   

4.
Macroinvertebrate assemblages were related to environmental factors that were quantified at the sample scale in streams subjected to a gradient of cattle grazing. Environmental factors and macroinvertebrates were concurrently collected so assemblage structure could be directly related to environmental factors and the relative importance of stressors associated with cattle grazing in structuring assemblages could be assessed. Based on multivariate and inferential statistics, measures of physical habitat (% fines and substrate homogeneity) had the strongest relationships with macroinvertebrate assemblage structure. Detrital food variables (coarse benthic and fine benthic organic matter) were also associated with assemblage structure, but the relationships were never as strong as those with physical habitat measures, while autochthonous food variables (chlorophyll a and epilithic biomass) appeared to have no association with assemblage structure. The amount of variation explained in taxa composition and macroinvertebrate metrics is within values reported from studies that have examined macroinvertebrate metric–sediment relationships. The % Coleoptera and % crawlers had consistent relationships with % fines during this study, which suggests they may be useful metrics when sediment is a suspected stressor to macroinvertebrate assemblages in Blue Ridge streams. Findings from this study also demonstrate the importance of quantitative sampling through time when research goals are to identify relationships between macroinvertebrates and environmental factors.  相似文献   

5.
Diatoms are potentially the most important biomonitors of environmental change in high arctic lakes and ponds, but to date few autecological data are available. Because of the shallow nature of many of these water bodies, a large proportion of taxa are periphytic and planktonic diatoms are absent for the most part. By determining the microhabitat and substrate preferences of these benthic diatom taxa, the potential exists to infer past changes in available habitats from fossil diatom assemblages collected from sediment cores and ultimately to reconstruct past environmental and climatic changes responsible for these shifts in habitat availability. To refine our understanding of high arctic diatom habitat preference, the common diatom taxa found on submerged moss (bryophyte), sediment, and rock substrates from lakes and ponds on Bathurst Island, Nunavut, Canadian High Arctic were examined. The relationships among key limnological variables and the common taxa from each habitat were examined. Many diatom taxa exhibited varying degrees of microhabitat preference, with moss representing the more unique habitat. In addition, the following limnological variables significantly ( P ≤ 0.05) explained the species variance for each of the three substrates: Na + and total nitrogen for moss; total phosphorus (filtered) and pH for rock; and Fe3 + , total phosphorus (unfiltered), total nitrogen, temperature, and pH for sediment. These data can be used to help interpret monitoring and paleolimnological studies in this environmentally sensitive region.  相似文献   

6.
There is still no assessment of the impact of sediment chemicals and environmental conditions on macroinvertebrates at the scale of the St. Lawrence River. In order to assess these impacts in the fluvial section of the St. Lawrence River including the Montreal harbour, the community structure of macroinvertebrates using different taxonomic aggregations (genus and family) and taxa attributes (abundance, presence–absence, indicator taxa) was assessed. The goal of the study was to determine the indicator taxa of macroinvertebrates along the fluvial continuum and relate changes in macroinvertebrate community to sediment chemical conditions and environmental characteristics of habitats using variance partitioning. This study also evaluated which taxonomic level and taxa attributes of macroinvertebrates were the most suitable for bioassessment of quality of sediments and habitat environment in the St. Lawrence River. Four different macroinvertebrate assemblages were found distributed along the fluvial continuum using either abundance or presence–absence data and genus or family levels. Indicator taxa characteristic of the different macroinvertebrate communities were associated with the sediment contamination gradient. However, habitat environmental characteristics (water masses, sulphur and DOC in sediments) had more influence on macroinvertebrate assemblages than sediment contamination. Our study confirms that family level analysis can give information comparable to the genus level analysis using presence–absence or abundance of macroinvertebrates, yet a higher number of indicator taxa were detected at the genus level.  相似文献   

7.
Responses to microhabitat are often neglected when ecologists sample animal indicator groups. Microhabitats may be particularly influential in non-passive biodiversity sampling methods, such as baited traps or light traps, and for certain taxonomic groups which respond to fine scale environmental variation, such as insects. Here we test the effects of microhabitat on measures of species diversity, guild structure and biomass of dung beetles, a widely used ecological indicator taxon. We demonstrate that choice of trap placement influences dung beetle functional guild structure and species diversity. We found that locally measured environmental variables were unable to fully explain trap-based differences in species diversity metrics or microhabitat specialism of functional guilds. To compare the effects of habitat degradation on biodiversity across multiple sites, sampling protocols must be standardized and scale-relevant. Our work highlights the importance of considering microhabitat scale responses of indicator taxa and designing robust sampling protocols which account for variation in microhabitats during trap placement. We suggest that this can be achieved either through standardization of microhabitat or through better efforts to record relevant environmental variables that can be incorporated into analyses to account for microhabitat effects. This is especially important when rapidly assessing the consequences of human activity on biodiversity loss and associated ecosystem function and services.  相似文献   

8.
No-take marine reserves are one of the oldest and most versatile tools used across the Pacific for the conservation of reef resources, in particular for invertebrates traditionally targeted by local fishers. Assessing their actual efficiency is still a challenge in complex ecosystems such as coral reefs, where reserve effects are likely to be obscured by high levels of environmental variability. The goal of this study was to investigate the potential interference of small-scale habitat structure on the efficiency of reserves. The spatial distribution of widely harvested macroinvertebrates was surveyed in a large set of protected vs. unprotected stations from eleven reefs located in New Caledonia. Abundance, density and individual size data were collected along random, small-scale (20×1 m) transects. Fine habitat typology was derived with a quantitative photographic method using 17 local habitat variables. Marine reserves substantially augmented the local density, size structure and biomass of the target species. Density of Trochus niloticus and Tridacna maxima doubled globally inside the reserve network; average size was greater by 10 to 20% for T. niloticus. We demonstrated that the apparent success of protection could be obscured by marked variations in population structure occurring over short distances, resulting from small-scale heterogeneity in the reef habitat. The efficiency of reserves appeared to be modulated by the availability of suitable habitats at the decimetric scale (“microhabitats”) for the considered sessile/low-mobile macroinvertebrate species. Incorporating microhabitat distribution could significantly enhance the efficiency of habitat surrogacy, a valuable approach in the case of conservation targets focusing on endangered or emblematic macroinvertebrate or relatively sedentary fish species  相似文献   

9.
  1. Determining the appropriate measurement scale to assess habitat variables is critical for ecologists assessing biological or ecological conditions. Depth, velocity, substrate, woody debris and other fish cover variables occur on both reach and microhabitat scales, and fish habitat associations with these variables may be scale-dependent. The aim of this work was to better understand the importance of scale for fish–habitat associations with these variables in a framework consistent with environmental filtering and to test the hypothesis that habitat variable importance is scale-dependent.
  2. I used prepositioned areal electrofishing in wadeable streams of the Delaware River basin to evaluate the associations of fish with the same variables summarised on different reach and microhabitat scales. The importance of scale for fish–habitat associations was assessed using two approaches that approximate an environmental filtering framework: variance partitioning with (1) ordination and (2) generalised linear mixed models.
  3. Variables on both the reach and microhabitat scales explained a significant fraction of the total variation in fish community composition (p < 0.05). Variation decomposition of reach- and microhabitat-scale effects revealed 20.2% and 2.0% of all variation were due uniquely to reach and microhabitat scales, respectively. Measures of coarseness, embeddedness, amount of riffle and areal coverage of five fish cover variables were significant explanatory variables of community composition at the reach scale only (p < 0.05). Velocity and mesohabitat (amount or presence of riffle) were the only two habitat features that were significant explanatory variables of fish community composition at both the reach and microhabitat scales (p < 0.05). Individual models of species occurrence revealed similar patterns as seen with analyses of community composition.
  4. For many fishes, habitat features quantified at the reach scale were more explanatory than at the microhabitat scale. Longnose dace (Rhinichthys cataractae) were more dependent upon microhabitat variables than reach-scale variables, relative to other fishes. Mean velocity at the reach scale was the most important explanatory variable for explaining fish community composition and indicated support for the concept of environmental filtering at the reach and microhabitat scales.
  5. Few studies of fish occurrence have incorporated a study design and analytical framework that approximates the hierarchical nature of habitat. This study identifies important scales and predictors, demonstrates the importance of a multiscale approach, and provides support for the environmental filtering concept at the reach and microhabitat scales. These findings will allow ecologists to better account for scale-dependent habitat associations and justify the use of fish habitat associations on reach and microhabitat scales for assessing biotic integrity, restoration and conservation of fishes.
  相似文献   

10.
Processes that structure subarctic marine communities, particularly in glaciated regions, are not well understood. This understanding is needed as a baseline and to manage these communities in the face of future climate-driven changes. This study investigates two coastal regions of Southeast Alaska with the goals to (a) identify and compare patterns of subtidal community structure for macroalgal, fish, macroinvertebrate (>5?cm), and small epibenthic invertebrate (<5?cm) communities between inner coast and outer coast sites and (b) link patterns of community structure to habitat and environmental parameters. Species assemblage and benthic habitat data were used to compare species diversity and community composition at 6?m and 12?m depths at nine inner coast and nine outer coast sites. Multivariate analysis was applied to reduce environmental variables to major gradients, to resolve community structure, and to relate community structure to habitat and environmental variables. Increased salinity and decreased temperature at outer coast sites compared with inner coast sites were associated with community structure, with greater species diversity at outer coast sites at 6?m depth. Invertebrate community composition was associated with benthic habitat, including crust and coralline algae for macroinvertebrates, and algal cover and substrate for small epibenthic invertebrates. This research suggests that marine communities in glaciated regions are strongly influenced by freshwater input and that future climate-driven changes in freshwater input will likely result in marine community composition changes.  相似文献   

11.
大型底栖动物是河流生态系统较好的指示类群,越来越广泛地应用于河流生态状况评价.识别大型底栖动物空间分布的影响因素可以分为宏观尺度因子、中观尺度因子和微观尺度因子.前人的研究较多集中于中观尺度.本研究基于10 m河段微生境因子与大型底栖动物调查,采用地统计学方法,在微观尺度上分析了大型底栖动物空间分布特征及其与微生境的关系.结果表明:不同生境类型中底栖动物指标存在差异性,激流、深潭和急流的Shannon指数平均值分别为2、1.9、1.78;大型底栖动物密度、生物量、丰富度指数及Shannon指数具有空间自相关性,存在一定的扩散效应;微生境因子与大型底栖动物指标及物种的空间关系存在差异性,其中,水深和流速与大型底栖动物关系的拟合度较弱,底质组成与大型底栖动物的拟合关系相对较好,底栖动物密度与粒径<4 mm底质体积百分比呈现正空间自相关,生物量、丰富度指数、Shannon指数与粒径>32 mm底质体积百分比呈现正空间自相关.本研究结果可为底栖动物扩散机制研究、调查样方设置、物理生境修复等提供参考.  相似文献   

12.
1. The spatial distribution of macroinvertebrate species was examined in relation to hydraulic and sedimentary conditions in a large gravel‐bed river, the Fraser River, Canada. Mean annual discharge in the Fraser River is 2900 m3 s?1 and annual flood discharge, due to snowmelt in May and June, averages 8760 m3 s?1.
2. Invertebrates were sampled from four water depths (0.2, 0.5, 1.5, 3.0 m) at various levels of discharge that together captured the spatial and temporal variability of the physical habitat. Several hydraulic (near‐bed shear velocity, Boundary Reynolds number, turbulence intensity, depth‐averaged velocity, Froude number, Reynolds number) and substratum variables (mean grain size, Trask's sorting coefficient, Nikuradse's roughness, percentage of fine sediment, and Shields entrainment function) were measured for each sample of macroinvertebrates. Concentrations of fine and coarse particulate organic matter were also assessed.
3. The physical habitat was characterized by a major gradient of hydraulic conditions that corresponded positively with increasing water depth and accounted for 52% of the total variation in the habitat data. Substratum conditions and the concentration of organic matter explained 24% of the total variation in the habitat data.
4. The distribution of invertebrates was correlated significantly with hydraulic variables and suggests that hydraulic conditions represent a major physical gradient along which the benthic community is organized. The distribution of organic matter and substratum texture were also important for some species. The spatial distribution of most species reflected morphological and trophic suitability to particular habitat conditions.
5. Hydraulic stress associated with foraging and maintaining position, as well as organic matter retention in coarse substrata, are probable mechanisms affecting the spatial distribution of macroinvertebrates.  相似文献   

13.
1. Most attempts to describe the distribution of benthic macroinvertebrates in large rivers have used local (grab‐scale) assessments of environmental conditions, and have had limited ability to account for spatial variation in macroinvertebrate populations. 2. We tested the ability of a habitat classification system based on multibeam bathymetry, side‐scan sonar, and chirp sub‐bottom seismics to identify large‐scale habitat units (‘facies’) and account for macroinvertebrate distribution in the Hudson River, a large tidal river in eastern New York. 3. Partial linear regression analysis showed that sediment facies were generally more effective than local or positional variables in explaining various aspects of the macroinvertebrate community (community structure, density of all invertebrates, density of fish forage, density of a pest species –Dreissena polymorpha). 4. Large‐scale habitats may be effective at explaining macroinvertebrate distributions in large rivers because they are integrative and describe habitat at the spatial scales of dominant controlling processes.  相似文献   

14.
Rodents on tropical land-bridge islands   总被引:2,自引:0,他引:2  
The results are reported of a survey of rodents on 10 forested land-bridge islands ranging in size from 0.2 to 350 ha in the state of Bolívar, Venezuela. The islands were contained within a lake formed c. 12 years before the study by the damming of the Caroni River for hydroelectric power. Rodents were sampled on each island by live-trapping along transects that sampled all available habitat types on each island, and microhabitat structure was measured at each trap station. A total of 674 captures of 359 individuals of six species of rodents was recorded. Species composition changed from the largest to the smallest islands, and small and medium islands (0.2–11 ha) displayed the typical effects of insularity, with fewer species and increased abundances and biomass. The largest island (350 ha) seemed to function more like a mainland. Most species were associated with a suite of microhabitat variables. It is suggested that release from top-down control by predators was responsible for higher abundances and biomass on the smaller islands and that predators moving between large islands and other nearby landmasses help maintain a mainland community structure on large islands. However, changes in species composition on smaller islands may be the result of patchy occurrences of some species before isolation, changes in microhabitat structure following isolation, and species-specific microhabitat requirements.  相似文献   

15.
Predictive species’ distribution models may answer ecological questions about habitat selection, co-occurrence of species and competition between them. We studied the habitat preferences and segregation of two sympatric species of declining sandgrouse, the black-bellied sandgrouse (Pterocles orientalis) and the pin-tailed sandgrouse (Pterocles alchata), during the breeding season. We developed predictive models that related sandgrouse presence to environmental variables at three different spatial levels: large geographical, landscape and microhabitat scales. At the large geographical scale, differences between sandgrouse distributions, in the Iberian Peninsula, seem to be explained mainly in terms of bioclimatology: pin-tailed sandgrouse appear to be a more thermophilous species and occupy warmer sites usually located in flatter areas. At the landscape spatial level, in those areas that exhibit environmental conditions allowing for both species’ co-existence at a large geographical scale, black-bellied sandgrouse appear to be more tolerant to environmental variation than pin-tailed sandgrouse. At the microhabitat level, however, differences between species could be related to different flocking behaviour as a consequence of different sensitivities to vegetation structure and predators. Thus, the observed spatial distribution patterns are the result of different ecological factors that operate at different spatial levels. Conservation guidelines for these species should therefore consider their habitat preferences at large geographical, landscape and microhabitat scales.  相似文献   

16.
  1. Metacommunities are structured by a combination of different ecological factors that vary in their importance depending on environmental heterogeneity and species functional equivalence. However, empirical tests of such context-dependence at regional scales are still missing.
  2. We investigated associations between deterministic (e.g. environmental filtering and biotic interactions) and stochastic factors (e.g. dispersal related) and metacommunity structure of macroinvertebrates and diatoms across streams in four regions with contrasting levels of environmental and organismal trait heterogeneity.
  3. Environmental filtering was most strongly associated with the region that showed moderate environmental heterogeneity and comprised communities with the highest trait heterogeneity. Associations with stochastic factors in the regions were more variable and difficult to predict. Environmental factors and the degree of genus-level association were generally more strongly associated with macroinvertebrates than with diatoms, whereas stochastic factors had consistently lower influence on macroinvertebrates.
  4. These results suggest that the degree to which deterministic versus stochastic factors influence aquatic metacommunities depends on environmental and trait heterogeneity. Furthermore, organismal characteristics such as dispersal potential, habitat specialisation and sensitivity to environmental variation can also generate considerable context dependency in metacommunity structure.
  相似文献   

17.
  1. According to metacommunity theories, the structure of natural communities is the result of both environmental filtering and spatial processes, with their relative importance depending on factors including local habitat characteristics, functional features of organisms, and the spatial scale considered. However, few studies have explored environmental and spatial processes in riverine systems at local scales, explicitly incorporating spatial coordinates into multi-taxa distribution models. To address this gap, we conducted a small-scale study to discriminate between abiotic and biotic factors affecting the distribution of aquatic macroinvertebrates, applying metacommunity concepts.
  2. We studied a mountain section in each of three perennial streams within the Po River Basin (northern Italy). We sampled macroinvertebrates both in summer and winter, using specific in situ 50-point random sampling grids. Environmental factors, including benthic organic matter (BOM), flow velocity, water depth, and substrate were recorded together with spatial coordinates for each sampling point. The relationships between community metrics (taxon richness, abundance, biomass, biomass–abundance ratio, and functional feeding groups) and explanatory variables (environmental and spatial) were assessed using generalised additive models. The influence of the explanatory variables on community structure was analysed with joint species distribution models.
  3. Environmental variables—primarily BOM—were the main drivers affecting community metrics, whereas the effects of spatial variables varied among metrics, streams, and seasons. During summer, community structure was strongly affected by BOM and spatial position within the riverbed, the latter probably being a proxy for mass effects mediated by biotic and stochastic processes. In contrast, community structure was mainly shaped by hydraulic variables in winter.
  4. Using macroinvertebrate communities as a model group, our results demonstrate that metacommunity concepts can explain small-scale variability in community structure. We found that both environmental filtering and biotic processes shape local communities, with the strength of these drivers depending on the season. These insights provide baseline knowledge that informs our understanding of ecological responses to environmental variability in contexts including restoration ecology, habitat suitability modelling, and biomonitoring.
  相似文献   

18.
Species distribution models (SDMs) largely rely on free-air temperatures at coarse spatial resolutions to predict habitat suitability, potentially overlooking important microhabitat. Integrating microclimate data into SDMs may improve predictions of organismal responses to climate change and support targeting of conservation assets at biologically relevant scales, especially for small, dispersal-limited species vulnerable to climate-change-induced range loss. We integrated microclimate data that account for the buffering effects of forest vegetation into SDMs at a very high spatial resolution (3 m2) for three plethodontid salamander species in Great Smoky Mountains National Park (North Carolina and Tennessee). Microclimate SDMs were used to characterize potential changes to future plethodontid habitat, including habitat suitability and habitat spatial patterns. Additionally, we evaluated spatial discrepancies between predictions of habitat suitability developed with microclimate and coarse-resolution, free-air climate data. Microclimate SDMs indicated substantial losses to plethodontid ranges and highly suitable habitat by mid-century, but at much more conservative levels than coarse-resolution models. Coarse-resolution SDMs generally estimated higher mid-century losses to plethodontid habitat compared to microclimate models and consistently undervalued areas containing highly suitable microhabitat. Furthermore, microclimate SDMs revealed potential areas of future gain in highly suitable habitat within current species’ ranges, which may serve as climatic microrefugia. Taken together, this study highlights the need to develop microclimate SDMs that account for vegetation and its biophysical effects on near-surface temperatures. As microclimate datasets become increasingly available across the world, their integration into correlative and mechanistic SDMs will be imperative for accurately estimating organismal responses to climate change and helping environmental managers tasked with spatially prioritizing conservation assets.  相似文献   

19.
Multiple evidence of positive relationships between nice breadth and range size (NB–RS) suggested that this can be a general ecological pattern. However, correlations between niche breadth and range size can emerge as a by-product of strong spatial structure of environmental variables. This can be problematic because niche breadth is often assessed using broad-scale macroclimatic variables, which suffer heavy spatial autocorrelation. Microhabitat measurements provide accurate information on species tolerance, and show limited autocorrelation. The aim of this study was to combine macroclimate and microhabitat data to assess NB–RS relationships in European plethodontid salamanders (Hydromantes), and to test whether microhabitat variables with weak autocorrelation can provide less biased NB–RS estimates across species. To measure macroclimatic niche, we gathered comprehensive information on the distribution of all Hydromantes species, and combined them with broad-scale climatic layers. To measure microhabitat, we recorded salamander occurrence across > 350 caves and measured microhabitat features influencing their distribution: humidity, temperature and light. We assessed NB–RS relationships through phylogenetic regression; spatial null-models were used to test whether the observed relationships are a by-product of autocorrelation. We observed positive relationships between niche breadth and range size at both the macro- and microhabitat scale. At the macroclimatic scale, strong autocorrelation heavily inflated the possibility to observe positive NB–RS. Spatial autocorrelation was weaker for microhabitat variables. At the microhabitat level, the observed NB–RS was not a by-product of spatial structure of variables. Our study shows that heavy autocorrelation of variables artificially increases the possibility to detect positive relationships between bioclimatic niche and range size, while fine-scale data of microhabitat provide more direct measure of conditions selected by ectotherms, and enable less biased measures of niche breadth. Combining analyses performed at multiple scales and datasets with different spatial structure provides more complete niche information and effectively tests the generality of niche breadth–range size relationships.  相似文献   

20.
Habitat partitioning is considered one of the main mechanisms of coexistence among small mammals. This is especially evident in arid environments where resources are particularly scarce. Habitat characteristics such as vegetation heterogeneity and complexity are expected to increase species coexistence, increasing the number of microhabitats that can be occupied by species with different requirements. The Andean foothills can be considered as an ecotone between the Monte and Altoandina phytogeographic provinces as they harbor species from both. Consequently more species are thought to coexist in this area. The objectives of this study were to assess the macro- and microhabitat selection of the small mammal assemblage inhabiting the Andean foothills during wet and dry season and to determine how animals segregate environmental resources to ensure their coexistence. We found that habitat selection occurs at both scales in the Andean foothills. Two species, Eligmodontia moreni and Phyllotis xanthophygus, were capable of distinguishing among macrohabitat types, whereas all species showed habitat selection at the microhabitat scale. We registered selection during both seasons, with some overlap of resource selection during the wet season and the greatest segregation of microhabitat resources during the dry season. Therefore, this work evidence that the assembly of small mammals is sensitive to habitat structure especially in dry seasons where resources are constraints due to arid conditions of Andean foothills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号