首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutelin is a major seed storage protein, accounting for 60?C80?% of the total endosperm protein content in rice. To test whether we could augment the expression of an introduced recombinant protein in rice by suppressing the glutelin gene, we generated transgenic glutelin RNAi (glu RNAi) rice seeds. RNA gel blot analyses confirmed that the endogenous glutelin gene was severely suppressed in these transgenic rice lines. RT-PCR analysis further revealed that all the members of glutelin multigene family were downregulated. Transgenic glu RNAi rice seeds expressing a recombinant red fluorescent protein (RFP) showed stronger fluorescence than seeds transformed with the RFP gene only. Western blot analysis further revealed that the relative accumulation of RFP in glu RNAi seeds was twofold higher than that in the RFP-only transgenic seeds. These results suggest that RNAi targeting of an endogenous storage protein could be of great utility in obtaining higher transgene expression in genetically engineered rice and other plant lines.  相似文献   

2.
3.
4.
The complete genome of bacteriophage PaP3 was sequenced in a previous study by our laboratory; however, the PaP3 lysozyme gene could not be identified by homology search. In this study, based on bioinformatic analysis of its secondary structure, we have determined that the protein encoded by the p02 gene of PaP3 is likely to be a lysin. To confirm the function of the p02 gene, a recombinant expression plasmid was constructed by inserting the p02 gene into a pQE-31 plasmid; the recombinant construct was cloned and expressed in Escherichia coli JM109. The lytic activity of the expressed, purified product was observed by gel diffusion assay. The result showed that the recombinant plasmid successfully expressed 6 × his-tagged p02 protein. The expressed product had a growth inhibitory effect on Staphylococcus aureus but not on Pseudomonas aeruginosa or E. coli. However, it retained lytic activity against peptidoglycan from cell walls of P. aeruginosa and E. coli. Therefore, it is supposed that this lysozyme requires the help of holin or other punching proteins to exert lytic effects on live gram-negative bacteria. The results suggest that the p02 protein of PaP3 is a new member of the lysozyme family, which is not completely host-specific and might serve as an anti-staphylococcal agent.  相似文献   

5.
6.
Phenylalanine ammonia-lyase (PAL) catalyzes the first reaction in biosynthesis pathway of flavonoids and plays an important role in plant stress resistance. In this study, the 5’ flanking region of phenylalanine ammonia-lyase gene was isolated from Fagopyrum tataricum by thermal asymmetric interlaced PCR method, named PFtPal (GenBank: KF463139). To investigate the functional properties of PFtPal, we constructed a series of plant expression vectors that contained different promoter fragments resulting from nest deletions and had successfully transformed them into tobacco leaves by Agrobacterium tumefaciens. Histochemical assay of GUS suggested that PFtPal could drive GUS gene expression in leaves and roots, while GUS activity was not detected in the stem. In addition, the region of ?274 bp to ?1 bp was enough to drive normal expression of GUS gene. Low temperature treatment of transgenic tobacco plants demonstrated that PFtPal conferred cold-induced expression. Taken together, our study will help to better understand the Pal promoter, and provides a candidate promoter for molecular breeding in Fagopyrum plants.  相似文献   

7.
8.
Lipoxygenases (LOXs) are enzymes involved in lipid peroxidation. Here we reported the identification, molecular and functional characterization of the gene encoding rice (Oryza sativa L.) seed LOX3 (sLOX3). Via a map-based cloning strategy we identified Os03g0700400 as the candidate gene encoding sLOX3. Further functional complementary test and biochemical characterization of the recombinant Os03g0700400 protein verified the identification. The sLOX3 gene was highly expressed in roots, moderately in embryos and very weakly in leaves, leaf sheaths and stems. Transient expression experiment (in rice protoplasts) and subsequent laser confocal microscopic analysis demonstrated that the sLOX3 protein was localized into the cytosol. We next showed that overexpression of sLOX3 in a japonica sLOX3-normal rice cultivar, Wuyunjing 7 accelerated the decrease of seed germination ability when the seeds were routinely stored, which demonstrated that sLOX3 had a negative effect on seed longevity (storability). Meanwhile, an increased occurrence of embryo decay was observed in the same transgenic seeds, suggesting that sLOX3 might negatively affect seed longevity by facilitating colonization of particular seed pathogens. Our result forwarded the understanding of the effects of 9-LOX on rice seed longevity.  相似文献   

9.
We previously reported that the expression of Bombyx mori 30Kc19 gene in CHO cells significantly improved both the production and sialylation of recombinant human EPO (rHuEPO) in adhesion culture mode. In this study, the effects of 30Kc19 expression and supplementation of 30Kc19 recombinant protein on the productivity and glycosylation pattern of rHuEPO were investigated in the serum-free suspension culture mode. Especially, glycosylation pattern was examined in detail using a quantitative MALDI-TOF MS method. The expression of 30Kc19 increased the EPO production by 2.5-folds and the host cells produced rHuEPO with more complex glycan structures and a larger content of sialic acid and fucose. The glycan structures of rHuEPO in the 30Kc19-expressing cell consisted of bi-, tri-, tetra-, and penta-antennary branching (35, 18, 33, and 14?%, respectively), while the control cells produced predominantly bi-antennary branching (70?%). About 53?% of the glycans from rHuEPO in the 30Kc19-expressing cell was terminally sialylated, while no obvious sialylated glycan was found in the control cells. The percentage of fucosylated glycans from the 30Kc19-expressing cell culture was 77?%, whereas only 61?% of the glycans from the control cell were fucosylated glycans. We also examined whether these effects were observed when the recombinant 30Kc19 protein produced from Escherichia coli was supplemented into the culture medium for CHO cells. In the control cell line without the 30Kc19 gene, EPO production increased by 41.6?% after the addition of 0.2?mg/mL of the recombinant 30Kc19 protein to the culture medium. By the Western blot analysis after two-dimensional electrophoresis (2-DE) of isoforms of EPO, we confirmed that 30Kc19 enhanced the sialylation of EPO glycans. These results demonstrated that both 30Kc19 gene expression and the recombinant 30Kc19 protein addition enhanced rHuEPO productivity and glycosylation in suspension culture. In conclusion, the utilization of 30Kc19 in CHO cell culture holds great promise for use in the manufacturing of improved biopharmaceutical glycoproteins.  相似文献   

10.
We have isolated five cDNA clones (osk15) for protein kinases from rice which are related to SNF1 protein kinase of Saccharomyces cerevisiae. Based on the sequence homology, these cDNAs can be classified into two groups, group 1 (osk1) and group 2 (osk25). The products of these genes were demonstrated to be functional SNF1-related protein kinases by in vitro and in vivo experiments. Recombinant proteins expressed from both groups of genes were fully active as protein kinases and could phosphorylate SAMS peptide, a substrate specific for the SNF1/AMPK family, as well as themselves (autophosphorylation). Moreover, expression of osk3 cDNA in yeast snf1 mutants restored SNF1 function. Northern blot analyses showed differential expression of these two gene groups; group 1 is expressed uniformly in growing tissues (young roots, young shoots, flowers, and immature seeds), whereas group 2 is strongly expressed in immature seeds. SNF1-related protein kinases have been reported from different plant species, such as rye, barley, Arabidopsis, tobacco, and potato, while the type of gene strongly expressed in immature seeds is known only in cereals such as rye, barley, and, from our findings, in rice. Expression levels of the group 2 genes were further analyzed in seeds during seed maturation. Expression is transiently increased in the early stages of seed maturation and then decreases. The expression peak precedes those of the sbe1 and waxy genes, which are involved in starch synthesis in rice. Taken together, these findings suggest that group 2 OSK genes play important roles in the early stages of endosperm development in rice seeds.  相似文献   

11.
12.
Thioredoxin h (TRX h) functions as a reducing protein and is present in all organisms. As a new approach for inducing the endoplasmic reticulum (ER) stress, TRX h (OsTRX23) was expressed as a secretory protein using the endosperm-specific glutelin GluB-1 promoter and a signal peptide. In transgenic rice seeds, the majority of the recombinant TRX h accumulated in the ER but some was also localized to the protein body IIs (PB-IIs). The rice grain quality was dependent on the TRX h accumulation level. Increased TRX h expression resulted in aberrant phenotypes, such as chalky and shriveled features, lower seed weight and lower seed protein content. Furthermore, the accumulation of some seed storage proteins (SSPs) was significantly suppressed and the morphology of the protein bodies (PB-Is and PB-IIs) changed according to the level of TRX h. SSPs, such as 13 kDa prolamin and GluA, were specifically modified via the reducing action of TRX h. These changes led to the activation of the ER stress response, which was accompanied by the expression of several chaperone proteins. Specifically, the ER stress markers BiP4 and BiP5 were significantly up-regulated by an increase in the level of TRX h. These results suggest that changes in the conformation of certain SSPs via the action of recombinant TRX h lead to an induced ER stress response in transgenic rice seeds.  相似文献   

13.
Phenylalanine Ammonia Lyase (PAL) gene which plays a key role in bio-synthesis of medicinally important compounds, Rutin/quercetin was sequence characterized for its efficient genomics application. These compounds possessing anti-diabetic and anti-cancer properties and are predominantly produced by Fagopyrum spp. In the present study, PAL gene was sequenced from three Fagopyrum spp. (F. tataricum, F. esculentum and F. dibotrys) and showed the presence of three SNPs and four insertion/deletions at intra and inter specific level. Among them, the potential SNP (position 949th bp G>C) with Parsimony Informative Site was selected and successfully utilised to individuate the zygosity/allelic variation of 16 F. tataricum varieties. Insertion mutations were identified in coding region, which resulted the change of a stretch of 39 amino acids on the putative protein. Our Study revealed that autogamous species (F. tataricum) has lower frequency of observed SNPs as compared to allogamous species (F. dibotrys and F. esculentum). The identified SNPs in F. tataricum didn’t result to amino acid change, while in other two species it caused both conservative and non-conservative variations. Consistent pattern of SNPs across the species revealed their phylogenetic importance. We found two groups of F. tataricum and one of them was closely related with F. dibotrys. Sequence characterization information of PAL gene reported in present investigation can be utilized in genetic improvement of buckwheat in reference to its medicinal value.  相似文献   

14.
Hirudin is the most potent non-covalent inhibitor of thrombin. Several expression systems have been used to produce recombinant hirudin for pharmaceutical purposes. However, high expression of active hirudin in Escherichia coli cytoplasm has not been successful owing to the fact that heterogenetic small peptide is easily degraded in the cell. To solve this problem, we constructed a recombinant form of the hirudin variant-1 (HV1) as a fusion protein with the small ubiquitin-related modifier gene (SUMO) by use of over-lap PCR. The fusion gene His6-SUMO-HV1 was highly expressed in E. coli BL21 (DE3) in which the SUMO-HV1 accounts for over 30% of the soluble fraction. The fusion protein was purified by Ni?CNTA affinity chromatography and cleaved by a SUMO-specific protease Ulp1 to release the HV1 with natural N-terminal. The recombinant HV1 (rHV1) was further purified by Ni?CNTA affinity chromatography and then by Q anion-exchange chromatography. N-terminal sequencing result demonstrated the purified rHV1 had the same N-terminal sequence as the native hirudin. MALDI-TOF/MS analysis indicated that the molecular weight of the purified rHV1 protein was 6939.161 Da, which was similar to the theoretical molecular weight of rHV1 6,944 Da. The Chromozym TH assay result showed that the anti-thrombin activity of purified rHV1 was 8,800 ATU/mg and comparable to the specific activity of native hirudin.  相似文献   

15.
16.
《Fungal biology》2014,118(11):885-895
Manganese-dependent superoxide dismutase (MnSOD) is one of the key enzymes involved in the cellular defense against oxidative stress. Previously, the Pneumocystis carinii sod2 gene (Pcsod2) was isolated and characterized. Based on protein sequence comparison, Pcsod2 was suggested to encode a putative MnSOD protein likely to be targeted into the mitochondrion. In this work, the Pcsod2 was cloned and expressed as a recombinant protein in EG110 Saccharomyces cerevisiae strain lacking the MnSOD-coding gene (Scsod2) in order to investigate the function and subcellular localization of P. carinii MnSOD (PcMnSOD). The Pcsod2 gene was amplified by PCR and cloned into the pYES2.1/V5-His-TOPO® expression vector. The recombinant construct was then transformed into EG110 strain. Once its expression had been induced, PcMnSOD was able to complement the growth defect of EG110 yeast cells that had been exposed to the redox-cycling compound menadione. N-term sequencing of the PcMnSOD protein allowed identifying the cleavage site of a mitochondrial targeting peptide. Immune-colocalization of PcMnSOD and yeast CoxIV further confirmed the mitochondrial localization of the PcMnSOD.Heterologous expression of PcMnSOD in yeast indicates that Pcsod2 encodes an active MnSOD, targeted to the yeast mitochondrion that allows the yeast cells to grow in the presence of reactive oxygen species (ROS).  相似文献   

17.
The aim of this study is to construct a new recombinant strain able to degrade cellulose efficiently. The endo-β-1, 3-1, 4 glucanase (bgls) gene was cloned from Bacillus subtilis BTN7A strain by using PCR technique. The specific primers of bgls gene were deduced. Optimization of PCR mixture and program were identified. The nucleotide sequence of bgls was placed in the public domain (GenBank accession number KM009051.1). The obtained bgls DNA was cloned with pGEM®-T Easy Vector. The recombinant plasmid designated as Bgls-NRC-1 was transformed into E. coli DH5α. The successful cloning of the bgls gene was tested either by PCR or by evaluating its expression in its new bacterial host. The bgls gene was expressed efficiently in E. coli and the enzyme activity of the transformant was compared to the enzyme activity of the donor bacterial strain. The new constructs produce much higher enzyme yields than the donor bacterial strain, they produce about 29% and about 57% higher cellulase specific activity at 37?°C and 55?°C respectively. Optimization of cellulolytic activity of the new recombinant strain were described. The effect of minimal medium supplemented with CMC or cellulose, or complete medium (LB) on bgls expression were tested, the order of cellulase activity production was CMC27.2?>?cellulose 21.9?>?LB 19.8?U/mg protein, respectively at 24?h. CMC was proved to be the best medium for cellulase production. Results also showed that double the initial inoculum resulted in more cellulase activities in all media.  相似文献   

18.
A xylanase gene from Paecilomyces thermophila was functionally expressed in Pichia pastoris. The recombinant xylanase (xynA) was predominantly extracellular; in a 5?l fermentor culture, the total extracellular protein was 8.1?g?l?1 with an activity of 52,940?U?ml?1. The enzyme was purified to homogeneity with a recovery of 48?%. The recombinant xynA was optimally active at 75?°C, as measured over 10?min, and at pH 7. The enzyme was stable up to 80?°C for 30?min. It hydrolyzed birchwood xylan, beechwood xylan and xylooligosaccharides to produce xylobiose and xylotriose as the main products.  相似文献   

19.
20.
This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman–Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327 bp encoding 109 amino acids was cloned from rice bean seeds using degenerate primer set. BlastP search revealed that the RbTI encoded amino acid of approx 13.0 kDa and shared 99% homology each with BBI from Phaseolus parvulus, Vigna trilobata and Vigna vexilata. Phylogenetic tree also showed close relationship of RbTI with BBI from other members of Leguminaceae family. RbTI gene was further confirmed as intronless (GenBank accession no. KJ159908). The secondary and 3D-structural models for the RbTI were predicted with homology modeling. qRT-PCR studies revealed the highest RbTI expression in the seeds nearing maturity, whereas the low expression of the gene was noticed in young leaves. The isolated RbTI was successfully expressed in Escherichiacoli and the highest expression was recorded after 5.5 h of induction. Study on the inhibitory activity of expressed protein against the gut proteases of Hessian fly larvae revealed 87% inhibition. The novel RbTI gene will further broaden the pool of plant defense genes and could be an ideal choice for developing transgenic crops resistant to insect pests with high economic value. In addition, it has the potential to be used as a probe for selection of insect- and pathogen-resistant genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号