首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
X Gao  J L Marrison  M R Pool  R M Leech    A Baker 《Plant physiology》1996,112(4):1457-1464
To understand and manipulate plant peroxisomal protein targeting, it is important to establish the universality or otherwise of targeting signals. Contradictory results have been published concerning the nature and location of the glyoxysomal/peroxisomal targeting signal of isocitrate lyase (ICL). L.J. Olsen, W.F. Ettinger, B. Damsz, K. Matsudaira, A. Webb, and J.J. Harada ([1993] Plant Cell 5: 941-952) concluded that the last 5 amino acids (AKSRM) of Brassica napus ICL were sufficient and the last 37 amino acids were necessary for targeting to Arabidopsis leaf peroxisomes. In contrast, R. Behari and A. Baker ([1993]) J Biol Chem 268: 7315-7322) could find no requirement for the almost identical carboxy-terminal sequence AKARM for import of Ricinus communis ICL into isolated sunflower cotyledon glyoxysomes. To resolve this discrepancy, the import characteristics of a mutant R. communis ICL lacking the last 19 amino acids of the carboxy terminus was studied. ICL delta 19 was able to be imported by isolated sunflower glyoxysomes and by tobacco leaf peroxisomes when expressed transgenically. These results demonstrate that the in vitro import system faithfully reflects targeting in vivo, and that the source of the organelles (Arabidopsis versus sunflower, leaf peroxisomes versus seed glyoxysomes) is not responsible for observed differences between B. napus and R. communis ICL. The R. communis enzyme would therefore appear to possess an additional glyoxysome/peroxisome targeting signal that is lacking in the B. napus protein.  相似文献   

2.
The targeting of castor bean isocitrate lyase to peroxisomes was studied by expression in the heterologous host Saccharomyces cerevisae from which the endogenous ICL1 gene had been removed by gene disruption. Peroxisomal import of ICL was dependent upon the PTS1 receptor Pex5p and was lost by deletion of the last three amino acids, Ala-Arg-Met. However, removal of an additional 16 amino acids restored the ability of this truncated ICL to be targeted to peroxisomes and this import activity, like that of the full-length protein, was dependent upon Pex5p. The ability of peptides corresponding to the carboxyl terminal ends of wild-type and Δ3 and Δ19 mutants of ICL to interact with the PTS1-binding portion of Pex5p from humans, plants and yeast was determined using the yeast two-hybrid system. The peptide corresponding to wild-type ICL interacted with all three Pex5p proteins to differing extents, but neither mutant could interact with Pex5p from any species. Thus, ICL can be targeted to peroxisomes in a Pex5p-dependent but PTS1-independent fashion. These results help to clarify the contradictory published data about the requirement of the PTS1 signal for ICL targeting.  相似文献   

3.
4.
A bacterial thermostable cellulase, the endo-1,4--D-glucanase E1 from Acidothermus cellulolyticus, was imported into chloroplasts, and an active enzyme was recovered both in vitro and in vivo. Precursor fusion proteins were synthesized with E1 or its catalytic domain, CD, fused to the transit peptide of ferredoxin or ribulose-bisphosphate carboxylase activase for stromal targeting. A spacer region of 1, 5 or 15 amino acids was included carboxy to the transit peptide. The efficiency of import and processing by the stromal processing peptidase depended on the nature of the transit peptide and the passenger protein, and increased with the length of the spacer between them. Besides finding E1 or CD in the stroma, protein was arrested in the envelope during import showing that structural features of E1 and CD, along with their proximity to the transit peptide, influence translocation. The cellulose binding domain and/or serine/proline/threoline-rich linker of E1 may impede efficient import. Significantly, most precursors for E1 and CD synthesized by in vitro translation possessed endoglucanse activity that was temperature-dependent, and required the residues AGGGY at the N-terminus of E1 and CD. Furthermore, activity was detected upon import into chloroplasts. Based on the in vitro analyses, five precursor fusion proteins were selected to determine if E1 and CD would be successfully targeted to chloroplasts in vivo. In transgenic tobacco plants, E1 and CD accumulated in both the stromal and membrane fractions and, importantly, chloroplast extracts showed endoglucanase activity.  相似文献   

5.
6.
 The peroxisome targeting signal (PTS) required for import of the rat acyl-CoA oxidase (AOX; EC 1.3.3.6) and the Candida tropicalis multifunctional protein (MFP) in plant peroxisomes was assessed in transgenic Arabidopsis thaliana (L.) Heynh. The native rat AOX accumulated in peroxisomes in A. thaliana cotyledons and targeting was dependent on the presence of the C-terminal tripeptide S-K-L. In contrast, the native C. tropicalis MFP, containing the consensus PTS sequence A-K-I was not targeted to plant peroxisomes. Modification of the carboxy terminus to the S-K-L tripeptide also failed to deliver the MFP to peroxisomes while addition of the last 34 amino acids of the Brassica napus isocitrate lyase, containing the terminal tripeptide S-R-M, enabled import of the fusion protein into peroxisomes. These results underline the influence of the amino acids adjacent to the terminal tripeptide of the C. tropicalis MFP on peroxisomal targeting, even in the context of a protein having a consensus PTS sequence S-K-L. Received: 19 July 1999 / Accepted: 19 February 2000  相似文献   

7.
Peroxisome research has been revolutionized by proteome studies combined with in vivo subcellular targeting analyses. Yellow and cyan fluorescent protein(YFP and CFP) are the classical fluorophores of plant peroxisome research. In the new transient expression system of Arabidopsis seedlings co-cultivated with Agrobacterium we detected the YFP fusion of one candidate protein in peroxisomes, but only upon co-transformation with the peroxisome marker, CFP-PTS_1. The data suggested that the YFP fusion was directed to peroxisomes due to its weak heterodimerization ability with CFP-PTS_1,allowing piggy-back import into peroxisomes. Indeed, if co-expressed with monomeric Cerulean-PTS_1(mCer-PTS_1),the YFP fusion was no longer matrix localized. We systematically investigated the occurrence and extent of dimerization-based piggy-back import for different fluorophore combinations in five major transient plant expression systems. In Arabidopsis seedlings and tobacco leaves both untagged YFP and monomeric Venus were imported into peroxisomes if co-expressed with CFP-PTS_1 but not with mCer-PTS_1. By contrast, piggy-back import of cytosolic proteins was not observed in Arabidopsis and tobacco protoplasts or in onion epidermal cells for any fluorophore combination at any time point. Based on these important results we formulate new guidelines for fluorophore usage and experimental design to guarantee reliable identification of novel plant peroxisomal proteins.  相似文献   

8.
Two putative promoters from Australian banana streak badnavirus (BSV) isolates were analysed for activity in different plant species. In transient expression systems the My (2105 bp) and Cv (1322 bp) fragments were both shown to have promoter activity in a wide range of plant species including monocots (maize, barley, banana, millet, wheat, sorghum), dicots (tobacco, canola, sunflower, Nicotiana benthamiana, tipu tree), gymnosperm (Pinus radiata) and fern (Nephrolepis cordifolia). Evaluation of the My and Cv promoters in transgenic sugarcane, banana and tobacco plants demonstrated that these promoters could drive high-level expression of either the green fluorescent protein (GFP) or the -glucuronidase (GUS) reporter gene (uidA) in vegetative plant cells. In transgenic sugarcane plants harbouring the Cv promoter, GFP expression levels were comparable or higher (up to 1.06% of total soluble leaf protein as GFP) than those of plants containing the maize ubiquitin promoter (up to 0.34% of total soluble leaf protein). GUS activities in transgenic in vitro-grown banana plants containing the My promoter were up to seven-fold stronger in leaf tissue and up to four-fold stronger in root and corm tissue than in plants harbouring the maize ubiquitin promoter. The Cv promoter showed activities that were similar to the maize ubiquitin promoter in in vitro-grown banana plants, but was significantly reduced in larger glasshouse-grown plants. In transgenic in vitro-grown tobacco plants, the My promoter reached activities close to those of the 35S promoter of cauliflower mosaic virus (CaMV), while the Cv promoter was about half as active as the CaMV 35S promoter. The BSV promoters for pregenomic RNA represent useful tools for the high-level expression of foreign genes in transgenic monocots.  相似文献   

9.
NADPH is a specific inhibitor of protein import into glyoxysomes   总被引:2,自引:0,他引:2  
We have studied the import of proteins into glyoxysomes in vitro and show that this process is specifically inhibited by NADPH. NADPH affects both binding and translocation of proteins into glyoxysomes, and inhibition is determined by the ratio of NADP+ to NADPH. The site of action of NADPH is most likely within the glyoxysome because (1) pretreatment of glyoxysomes with NADPH, followed by re-isolation of the organelles prior to the import assay, resulted in inhibition of import that could be restored by the addition of NADP+; (2) low concentrations of NADPH inhibited binding of proteins to broken glyoxysome membranes. The sensitivity of protein import to inhibition by NADPH declines as glyoxysomes are converted to leaf-type peroxisomes. A model is proposed that speculates on a possible role for NADPH in regulating protein import into plant peroxisomes.  相似文献   

10.
11.
Summary Growth inhibition towards Rhizopus nigricans, Fusarium oxysporum f. sp. radicis-lycopersici, Verticillium albo-atrum and Pythium ultimum was observed in vitro using a purified chitosanase from an actinomycete, Streptomyces sp, strain N174. The corresponding gene, with its own signal peptide, was inserted into pBI121.7 shuttle vector to transform tobacco. Transgenic plants were analysed for chitosanase activity by a sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay. Two major and one minor active electrophoretic forms were detected in transgenic tobacco. Some chitosanases were recovered not only in leaf homogenates but also in leaf intercellular fluid extracts. One chitosanase electrophoretic form migrated very closely to the purified Streptomyces mature protein while the others corresponded to molecules of higher molecular mass. The N-terminus sequence was determined for one of the three chitosanase forms. It exhibited a different signal peptide cleavage site when compared to the mature chitosanase from Streptomyces. This is the first report on the expression of an active chitosanase gene with antimicrobial potential in plants.Abbreviations aa amino acid - CIP calf intestinal phosphatase - CM carboxymethyl - GUS ß-glucuronidase - IF intercellular fluid - MS Murashige and Skoog - PAGE polyacrylamide gel electrophoresis - PR pathogenesisrelated - PVDF polyvinylidene difluoride - SP signal peptide  相似文献   

12.
A member of the potato proteinase inhibitor II (PPI II) gene family that encodes for a chymotrypsin iso-inhibitor has been introduced into tobacco (Nicotiana tabacum) usingAgrobacterium tumefaciens-mediated T-DNA transfer. Analysis of the primary transgenic plants (designated R0) confirmed that the introduced gene is being expressed and the inhibitor accumulates as an intact and fully functional protein. For insect feeding trials, progeny from the self-fertilization of R0 plants (designated R1) were used. Leaf tissue, either from transgenic or from control (non-transgenic) plants, was fed to larvae ofChrysodeixis eriosoma (Lepidoptera: Noctuidae, green looper),Spodoptera litura (F.) (Lepidoptera: Noctuidae) andThysanoplusia orichalcea (F.) (Lepidoptera: Noctuidae) and insect weight gain (increase in fresh weight) measured. Consistently,C. eriosoma larvae fed leaf tissue from transgenic plants expressing thePPI II gene grew slower than insects fed leaf tissue from non-transgenic plants or transgenic plants with no detectablePPI II protein accumulation. However, larvae of bothS. litura andT. orichalcea consistently demonstrated similar or faster growth when fed leaf tissue from transgenic plants compared with those fed non-transgenic plants. In agreement with the feeding trials, the chymotrypsin iso-inhibitor extracted from transgenic tobacco effectively retarded chymotrypsin-like activity measured inC. eriosoma digestive tract extracts, but not in extracts fromS. litura. We conclude, therefore, that for certain insects the use of chymotrypsin inhibitors should now be evaluated as an effective strategy to provide field resistance against insect pests in transgenic plants, but further, that a single proteinase inhibitor gene may not be universally effective against a range of insect pests. The significance of these observations is discussed with respect to the inclusion of chymotrypsin inhibitors in the composite of insect pest resistance factors that have been proposed for introduction into crop plants.  相似文献   

13.
Peroxisomes are vital metabolic organelles found in almost all eukaryotic organisms, and they rely exclusively on import of their matrix protein content from the cytosol. In vitro import of proteins into isolated peroxisomal fractions has provided a wealth of knowledge on the import process. However, the common method of protease protection garnered no information on the import of an N-terminally truncated PEX5 (PEX5C) receptor construct or peroxisomal malate dehydrogenase 1 (pMDH1) cargo protein into sunflower peroxisomes because of high degrees of protease susceptibility or resistance, respectively. Here we present a means for analysis of in vitro import through a covalent biotin label transfer and employ this method to the import of PEX5C. Label transfer demonstrates that the PEX5C construct is monomeric under the conditions of the import assay. This technique was capable of identifying the PEX5-PEX14 interaction as the first interaction of the import process through competition experiments. Labeling of the peroxisomal protein import machinery by PEX5C demonstrated that this interaction was independent of added cargo protein, and, strikingly, the interaction between PEX5C and the import machinery was shown to be ATP-dependent. These important mechanistic insights highlight the power of label transfer in studying interactions, rather than proteins, of interest and demonstrate that this technique should be applied to future studies of peroxisomal in vitro import.  相似文献   

14.
The Saccharomyces cerevisiae chitinase, encoded by the CTS1-2 gene has recently been confirmed by in vitro tests to possess antifungal abilities. In this study, the CTS1-2 gene has been evaluated for its in planta antifungal activity by constitutive overexpression in tobacco plants to assess its potential to increase the plant's defence against fungal pathogens. Transgenic tobacco plants, generated by Agrobacterium-mediated transformation, showed stable integration and inheritance of the transgene. Northern blot analyses conducted on the transgenic tobacco plants confirmed transgene expression. Leaf extracts from the transgenic lines inhibited Botrytis cinerea spore germination and hyphal growth by up to 70% in a quantitative in vitro assay, leading to severe physical damage on the hyphae. Several of the F1 progeny lines were challenged with the fungal pathogen, B. cinerea, in a detached leaf infection assay, showing a decrease in susceptibility ranging from 50 to 70%. The plant lines that showed increased disease tolerance were also shown to have higher chitinase activities.  相似文献   

15.
High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2‐overexpressing tobacco lines exhibited lower Na+ but higher K+ accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na+/K+ homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2‐regulated salt stress tolerance.  相似文献   

16.
Typically, nuclear-encoded chloroplast proteins are synthesized as precursors and require proteolytic processing upon import before their assembly into functional complexes within the organelle. A cDNA encoding a chloroplast processing enzyme (CPE), which was originally identified as a protease that cleaves the precursor for the major light-harvesting chlorophyll binding protein (preLHCP), was introduced into the tobacco genome in an antisense orientation to investigate the role of the enzyme in vivo . The presence of the antisense-CPE gene resulted in chlorotic leaves, and retarded shoot and root growth. The introduction of the antisense-CPE gene disrupted the normal pattern of plastid division. Chloroplast numbers in cotyledon and first leaf cells were reduced 25% compared to the control plants. Chloroplasts contained fewer thylakoids and large starch grains, the latter an indication of a change in carbon flux. CPE levels and activity were significantly lower in stromal extracts in the transgenic plants. Interestingly, in vitro import of precursor proteins was defective. Most of the preLHCP remained on the exterior of the organelle, and only a small fraction of preRBCA was imported, suggesting that a change in CPE levels can influence translocation across the envelope. Our in vivo results support the conclusion that CPE plays a critical role during chloroplast biogenesis, and that the pleiotropic effects of CPE down-regulation reflect its function as a general stromal processing peptidase as part of the import machinery. Furthermore, these findings indicate the importance of regulating the expression of components of the import machinery for normal plant development.  相似文献   

17.
Plant-based vaccines have been produced in transgenic plants including tobacco, potatoes, corn, and rice. However, these plants are not suitable for administration without cooking. To overcome this obstacle, a fusion gene encoding the synthetic enterotoxigenic Escherichia coli heat-labile enterotoxin B subunit genetically fused with a synthetic neutralizing epitope of porcine epidemic diarrhea virus (sLTB-sCOE) was introduced into lettuce cells (Lactuca sativa) by Agrobacterium-mediated transformation methods. The integration and expression of the sLTB-sCOE fusion gene was confirmed in transgenic lettuce by genomic DNA PCR amplification and Northern blot analysis, respectively. Synthesis and assembly of the LTB-COE fusion protein into oligomeric structures with pentamer size were observed in transgenic plant extracts by Western blot analysis with anti-LTB or anti-COE antibodies. The binding of plantproduced LTB-COE to intestinal epithelial cell membrane glycolipid receptors was confirmed by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). Based on the ELISA results, LTB-COE fusion protein made up about 0.026∼0.048% of the total soluble protein in the transgenic lettuce leaf tissues. The synthesis and assembly of LTB-COE monomers into biologically active oligomers in transgenic lettuce leaf tissues demonstrates the feasibility of using uncooked edible plant-based vaccines for mucosal immunization.  相似文献   

18.
19.
The expression of the Acidothermus cellulolyticus endoglucanase E1 gene in transgenic tobacco (Nicotiana tabacum) was examined in this study, where E1 coding sequence was transcribed under the control of a leaf specific Rubisco small subunit promoter (tomato RbcS-3C). Targeting the E1 protein to the chloroplast was established using a chloroplast transit peptide of Rubisco small subunit protein (tomato RbcS-2A) and confirmed by immunocytochemistry. The E1 produced in transgenic tobacco plants was found to be biologically active, and to accumulate in leaves at levels of up to 1.35% of total soluble protein. Optimum temperature and pH for E1 enzyme activity in leaf extracts were 81°C and 5.25, respectively. E1 activity remained constant on a gram fresh leaf weight basis, but dramatically increased on a total leaf soluble protein basis as leaves aged, or when leaf discs were dehydrated. E1 protein in old leaves, or after 5h dehydration, was partially degraded although E1 activity remained constant. Transgenic plants exhibited normal growth and developmental characteristics with photosynthetic rates similar to those of untransformed SR1 tobacco plants. Results from these biochemical and physiological analyses suggest that the chloroplast is a suitable cellular compartment for accumulation of the hydrolytic E1 enzyme.  相似文献   

20.
Previously it was shown that transient chloramphenicol acetyltransferase (CAT) marker gene expression in Arabidopsis thaliana and Nicotiana tabacum resulted in significant differences in the accumulation of the CAT reaction products in radioactive CAT assays. Compared to Nicotiana tabacum, conversion of chloramphenicol to the acetylated products in Arabidopsis thaliana extracts was rather low. Here we report that the low CAT enzyme activity can be attributed in part to a heat sensitive CAT inhibitory effect in extracts of Arabidopsis thaliana. CAT enzyme activity in transgenic tobacco is inhibited by extracts from Arabidopsis. This inhibitory effect diminishes when Arabidopsis extracts were heat incubated. CAT activity in transgenic Arabidopsis lines was very low and was only detected in heat incubated extracts. Alternatively, enzyme-linked immunosorbent assays (ELISAs) can be used to detect the CAT protein in transgenic Arabidopsis.Abbreviations CAT chloramphenicol acetyltransferase - CAM chloramphenicol - ELISA enzyme linked immunosorbent assay  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号