首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-DOPA decarboxylase has been purified to homogeneity from post mortem removed human kidneys. Homogeneity was examined by polyacrylamide gel electrophoresis (PAGE) analysis both in the presence and absence of SDS. The enzyme has a molecular weight of 100,000 daltons estimated by gel filtration and 50,000 daltons determined after SDS-PAGE. Human L-DOPA decarboxylase therefore is a dimer. Polyclonal antibodies produced against human L-DOPA decarboxylase react with the 50,000 daltons enzyme subunit after immuno-blotting and also precipitates enzyme activity. Activity against L-DOPA is partially inhibited by 5-hydroxytryptophan (5-HTP). The effect of various cations on L-DOPA decarboxylase activity has also been tested.  相似文献   

2.
3.
4.
A metallo-endoproteinase was purified from mouse kidney. The enzyme was solubilized from the 100 000 g sediment of kidney homogenates with toluene and trypsin, and further purified by fractionation with (NH4)2SO4. DEAE-cellulose chromatography and gel filtration. The molecular weight of the metalloproteinase was estimated by gel filtration on Sepharose 6B to be 270 000--320 000. On sodium dodecyl sulphate/polyacrylamide-gel electrophoresis in the presence of 2-mercaptoethanol, a single major protein with a mol.wt. of 81 000 was observed. Thus the active enzyme is an oligomer, probably a tetramer. It is a glycoprotein and has an apparent isoelectric point of 4.3. Kidney homogenates and purified preparations of the metalloproteinase degraded azocasein optimally at pH 9.5 and at I 0.15--0.2. The activity was not affected by inhibitors of serine proteinases (di-isopropyl phosphorofluoridate, phenylmethanesulphonyl fluoride), cysteine proteinases (4-hydroxymercuribenzoate, iodoacetate), aspartic proteinases (pepstatin) or several other proteinase inhibitors from actinomycetes (leupeptin, antipain and phosphoramidon). Inhibition of the enzyme was observed with metal chelators (EDTA, EGTA, 1,10-phenanthroline), and thiol compounds (cysteine, glutathione, dithioerythritol, 2-mercaptoethanol). The metalloproteinase degraded azocasein, azocoll, casein, haemoglobulin and aldolase, but showed little or no activity against the synthetic substrates benzoylarginine 2-naphthylamide, benzoylglycylarginine, benzyloxycarbonylglutamyltyrosine or acetylphenylalanyl 2-naphthyl ester. This metalloproteinase from mouse kidney appears to be distinct from previously described kidney proteinases.  相似文献   

5.
6.
Beta-Glucuronidase has been purified from mouse kidneys previously induced by gonadotrophin to a specific enzyme activity 15 times higher than the non-induced kidney. The purification procedure includes ultrasonication to solubilize the enzyme, acid and ammonium sulfate precipitations, gel filtration in Sephadex G-200, DEAE-ion exchange chromatography, and isoelectric focusing. The resulting product has a specific activity of 284,000 Fishman units/mg of protein, representing a 1,090-fold purification and is 17,000-fold higher than the level in the non-induced kidney. The purified beta-glucuronidase is apparently homogeneous by criteria of gel filtration, sodium dodecyl sulfate gel electrophoresis, and immunodiffusion. Characterization of the purified enzyme showed that it is identical with the lysosomal isoenzymic from electrophoretically, has subunit molecular weight of 74,000 (estimated by sodium dodecyl sulfate gel electrophoresis) and oligomer molecular weight of 300,000. The purified enzyme is stable at high temperature (up to 55 degrees) and at wide range of pH (from 4 to 11). It has a pH optimum for its activity at 4.7 and a Km of 1.18 times 10- minus 4 M. The purification and characterization of this enzyme from mouse kidney will have significance in the understanding of the molecular nature of the isoenzymes of beta-glucuronidase and will be useful in future studies on the mechanism of intracellular transport and distribution of this hydrolase.  相似文献   

7.
Histidine decarboxylase was purified from mouse mastocytoma P-815 cells to electrophoretic homogeneity by ammonium sulfate fractionation, dialyses at pH 7.5 and 6.0, chromatographies on DEAE-Sepharose CL-6B, Phenyl-Sepharose CL-4B and Hydroxylapatite, Phenyl-Superose HPLC, Mono Q HPLC, and Diol-200 gel filtration HPLC. Under the assay conditions used, the pure enzyme exhibited a specific activity of 800 nmol/min/mg, which constituted 12,500-fold purification compared to the crude extract, with a 7% yield. The two-step dialysis turned out to be essential for removing the factor(s) which interfered with the enzyme purification. The optimum pH for the enzyme reaction was 6.6 and the isoelectric point of the enzyme was pH 5.4. The molecular mass of the enzyme was found to be approximately 53 kDa on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, 110 kDa on gel filtration, and 115 kDa on polyacrylamide gradient gel electrophoresis in the absence of sodium dodecyl sulfate. The Km value for histidine was estimated to be 0.26 mM at pH 6.8.  相似文献   

8.
The concentration of mouse kidney histidine decarboxylase (HDC) is modulated by estrogen, testosterone, and thyroxine in a tissue-specific manner. Variation in HDC levels between strains of mice can be used to investigate the genetic regulation of (i) enzyme structure, (ii) tissue specific expression, and (iii) induction and repression by hormones. Variation in the structure of HDC between different inbred strains of mice affecting its K m for the cofactor pyridoxal-5-phosphate (PLP) and its heat stability has been discovered. The alternative phenotypes are additively inherited in crosses and the heat stability difference is due to alleles of a single structural gene, Hdc-s, which segregate among the BXD and BXH recombinant inbred strains. The allele Hdc-s b determines the heat-stable phenotype (C57BL substrains), and the allele Hdc-s d the heat-labile phenotype (DBA/2 and C3H/He strains). The alleles of the structural gene cosegregate with alleles of a regulatory gene previously named Hdc (determining kidney enzyme concentration); there were no recombinants among 38 RI strains. Therefore the two loci are less than 0.685 cM apart and comprise part of the HDC gene complex, [Hdc], on chromosome 2 of the mouse.This work was supported in part by an SERC studentship to S.A.M. and an MRC project grant to G.B.  相似文献   

9.
Pyruvate decarboxylase from the obligate anaerobe Sarcina ventriculi was purified eightfold. The subunit Mr was 57,000 +/- 3000 as estimated from SDS-PAGE, and the native Mr estimated by gel filtration on a Superose 6 column was 240,000, indicating that the enzyme is a tetramer. The Mr values are comparable to those for pyruvate decarboxylase from Zymomonas mobilis and Saccharomyces cerevisiae, which are also tetrameric enzymes. The enzyme was oxygen stable, and had a pH optimum within the range 6.3-6.7. It displayed sigmoidal kinetics for pyruvate, with a S0.5 of 13 mM, kinetic properties also found for pyruvate decarboxylase from yeast and differing from the Michaelis-Menten kinetics of the enzyme from Z. mobilis. No activators were found. p-Chloromercuribenzoate inhibited activity and the inhibition was reversed by the addition of dithiothreitol, indicating that cysteine is important in the active site. The N-terminal amino acid sequence of pyruvate decarboxylase was more similar to the sequence of S. cerevisiae than Z. mobilis pyruvate decarboxylase.  相似文献   

10.
Upon resolution of the particulate cell fraction of Veillonella alcalescens by gel chromatography, membranes and ribosomes were clearly resolved. Methylmalonyl-CoA decarboxylase was bound to the membranes and not to ribosomes as reported earlier. Membrane vesicles containing methylmalonyl-CoA decarboxylase were prepared by disrupting V. alcalescens cells with a French pressure chamber. About 64% of the decarboxylase was oriented in these vesicles with the substrate binding site facing to the outside. The vesicles performed a rapid accumulation of Na+ ions in response to the decarboxylation of methylmalonyl-CoA. Decarboxylation and transport were highly uncoupled. The efficiency of the transport was considerably increased if methylmalonyl-CoA decarboxylation was retarded by using a low temperature or by slowly generating the substrate enzymically from propionyl-CoA. Under optimized conditions Na+ was concentrated inside the inverted vesicles eight-times higher than in the incubation medium. Methylmalonyl-CoA decarboxylase was solubilized from the membranes with Triton X-100 and purified about 20-fold by affinity chromatography on monomeric avidin-Sepharose columns. The decarboxylase was specifically activated by Na+ ions (apparent Km approximately equal to 0.6 mM). Whereas (S)-methylmalonyl-CoA was the superior substrate (apparent Km approximately equal to 7 microM), malonyl-CoA was also decarboxylated (apparent Km approximately equal to 35 microM). The decarboxylation of methylmalonyl-CoA yielded CO2 and not HCO-3 as the primary reaction product. Analysis of the purified enzyme by dodecylsulfate gel electrophoresis indicated the presence of four different polypeptides alpha, beta, gamma, delta with Mr 60 000, 33 000, 18 5000 and 14 000. The latter of these polypeptides was clearly visible only after silver staining but not after staining with Coomassie brilliant blue. A low molecular weight polypeptide with similar staining properties was also found in oxaloacetate decarboxylase. Methylmalonyl-CoA decarboxylase contained about 1 mol covalently bound biotin per 125 500 g protein which was localized exclusively in the gamma-subunit. This subunit therefore represents the biotin carboxyl carrier protein of methylmalonyl-CoA decarboxylase. A new very sensitive method for the detection of biotin-containing proteins is described.  相似文献   

11.
1. Testosterone represses kidney histidine decarboxylase levels in both normal male and female mice. Tfm/Y mutant mice lack an androgen receptor and are phenotypically female. It has been suggested that the testosterone induction of HDC levels in these animals is a result of aromatisation to oestrogens in the absence of the androgen receptor; the oestrogens then induce the enzyme. 2. It is shown that the induction of HDC in Tfm/Y mice is specific to testosterone and not other androgens and can be mimiced by low doses of beta-oestradiol in normal female mice. 3. Analysis of Tfm/+ mice indicates that the testosterone induction effect is a function of individual kidney cells.  相似文献   

12.
Oxalyl-coenzyme A (oxalyl-CoA) decarboxylase was purified from Oxalobacter formigenes by high-pressure liquid chromatography with hydrophobic interaction chromatography, DEAE anion-exchange chromatography, and gel permeation chromatography. The enzyme is made up of four identical subunits (Mr, 65,000) to give the active enzyme (Mr, 260,000). The enzyme catalyzed the thiamine PPi-dependent decarboxylation of oxalyl-CoA to formate and carbon dioxide. Apparent Km and Vmax values, respectively, were 0.24 mM and 0.25 mumol/min for oxalyl-CoA and 1.1 pM and 0.14 mumol/min for thiamine pyrophosphate. The maximum specific activity was 13.5 microM oxalyl-CoA decarboxylated per min per mg of protein.  相似文献   

13.
L-Glutamate decarboxylase, an enzyme under the control of the asexual developmental cycle of Neurospora crassa, was purified to homogeneity from conidia. The purification procedure included ammonium sulfate fractionation and DEAE-Sephadex and cellulose phosphate column chromatography. The final preparation gave a single band on sodium dodecyl sulfate-polyacrylamide gels with a molecular weight of 33,200 +/- 200. A single band coincident with enzyme activity was found on native 7.5% polyacrylamide gels. The molecular weight of glutamate decarboxylase was 30,500 as determined by gel permeation column chromatography at pH 6.0. The enzyme had an acidic pH optimum and showed hyperbolic kinetics at pH 5.5 with a Km for glutamic acid of 2.2 mM and a Km for pyridoxal-5'-phosphate of 0.04 microM.  相似文献   

14.
Pyruvate decarboxylase [2-oxo acid carboxy-lyase, EC 4.1.1.1] was isolated from sweet potato roots and was partially purified from healthy and diseased tissues. There was no appreciable difference in properties between the enzymes from healthy and diseased tissues. The molecular weight of the enzyme was found to be 240,000 by polyacrylamide gel electrophoresis. Since sodium dodecyl sulfate polyacrylamide gel electrophoresis gave a molecular weight of 60,000 for the monomeric form of the enzyme, it is likely that sweet potato pyruvate decarboxylase contains 4 single polypeptide chains. The optimal pH of the decarboxylation reaction was 6.1--6.6. The Lineweaver-Burk double reciprocal plot curved upward, and the Hill coefficient was more than 1, with low concentrations of pyruvate. The enzyme was localized in the cytosol fraction. The activity of the enzyme increased in response to black-rot fungus infection, but decreased in response to cutting.  相似文献   

15.
Glutamate decarboxylase has been purified from potato tubers. The final preparation was homogeneous as judged from native and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Gel filtration on Sephadex G-200 gave a relative molecular mass Mr, of 91 000 for the native enzyme. Sodium dodecyl sulfate polyacrylamide gel electrophoresis gave a subunit Mr of 43 000. Thus the enzyme appears to be a dimer of identical subunits. It has 2 mol pyridoxal 5'-phosphate/mol protein, which could not be removed by exhaustive dialysis or gel filtration on Sephadex G-25. The enzyme has an absorption maximum at 370 nm in sodium phosphate buffer, pH 5.8. Reduction of the enzyme with sodium borohydride abolished the absorption maximum at 370 nm with attendant loss of catalytic activity. The enzyme exhibited pH-dependent spectral changes. The enzyme was specific for L-glutamate and could not decarboxylate other amino acids tested. The enzyme was maximally active at pH 5.8 and a temperature of 37 degrees C. Isoelectric focussing gave a pI of 4.7 Km values for L-glutamate and pyridoxal 5'-phosphate were 5.6 mM and 2 microM respectively. Thiol-directed reagents and heavy metal ions inhibited the enzyme, indicating that an -SH group is required for activity. The nature of the functional groups at the active site of the enzyme was inferred from competitive inhibition studies. L-Glutamate promoted inactivation of the enzyme caused by decarboxylation-dependent transamination was demonstrated. The characteristics of potato enzyme were compared with enzyme from other sources.  相似文献   

16.
Bacillus pumilus PS213 isolated from bovine ruminal fluid was able to transform ferulic acid and p-coumaric acid to 4-vinylguaiacol and 4-vinylphenol, respectively, by nonoxidative decarboxylation. The enzyme responsible for this activity has been purified and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extract from a culture induced by ferulic acid or p-coumaric acid shows three bands that are not present in the crude extract of an uninduced culture, while the purified enzyme shows a single band of 23 kDa; the molecular mass calculated by size exclusion chromatography is 45 kDa. Enzyme activity is optimal at 37 degrees C and pH 5.5 and is not enhanced by any cation. Kinetic studies indicated a Km of 1.03 mM and a Vmax of 0.19 mmol.min-1/mg.liter-1 for ferulic acid and a Km of 1.38 mM and a Vmax of 0.22 mmol.min-1/mg.liter-1 for p-coumaric acid.  相似文献   

17.
1. Uroporphyrinogen decarboxylase which catalyzes the formationof coproporphyrinogen from uroporphyrinogen is located in thesoluble fraction of tobacco leaves and was purified 72 foldthrough ammonium sulphate precipitation and calcium phosphosphategel absorption. 2. Kinetic studies indicated that the apparentMichaelis constant was 1 ? 10-6 M for uroporphyrinogen III (pH6.5; 37?C). Uroporphyrinogen III served as a much better substratethan uroporphyrinogen I under the standard conditions of thisstudy. 3. Enzyme activity was inhibited by thiol reagents andheavy divalent cations and was stimulated by some chelatingagents. 4. Both chloride and fluoride salts inhibited the formationof coproporphyrinogen from uroporphyrinogen. 1Present address: Department of Chemistry, Simon Fraser University,Burnaby 2, British Columbia, Canada. 2Present address: Biology Department, Utah State University,Logan, Utah 84322, U. S. A. (Received June 8, 1974; )  相似文献   

18.
19.
Acinetobacter calcoaceticus ATCC 23055 produces a large amount of 1,3-diaminopropane under normal growth conditions. The enzyme responsible, L-2,4-diaminobutyrate (DABA) decarboxylase (EC 4.1.1.-), was purified to electrophoretic homogeneity from this bacterium. The native enzyme had an M(r) of approximately 108,000, with a pI of 5.0, and was a dimer composed of identical or nearly identical subunits with apparent M(r) 53,000. The enzyme showed hyperbolic kinetics with a Km of 1.59 mM for DABA and 14.6 microM for pyridoxal 5'-phosphate as a coenzyme. The pH optimum was in the range 8.5-8.75, and Ca2+ gave a much higher enzyme activity than Mg2+ as a cationic cofactor. N-gamma-Acetyl-DABA, 2,3-diaminopropionic acid, ornithine and lysine were inert as substrates. The enzyme was different in subunit structure, N-terminal amino acid sequence and immunoreactivity from the DABA decarboxylase of Vibrio alginolyticus previously described.  相似文献   

20.
Z Huang  L Dostal    J P Rosazza 《Journal of bacteriology》1994,176(19):5912-5918
A ferulic acid decarboxylase enzyme which catalyzes the decarboxylation of ferulic acid to 4-hydroxy-3-methoxystyrene was purified from Pseudomonas fluorescens UI 670. The enzyme requires no cofactors and contains no prosthetic groups. Gel filtration estimated an apparent molecular mass of 40.4 (+/- 6%) kDa, whereas sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a molecular mass of 20.4 kDa, indicating that ferulic acid decarboxylase is a homodimer in solution. The purified enzyme displayed an optimum temperature range of 27 to 30 degrees C, exhibited an optimum pH of 7.3 in potassium phosphate buffer, and had a Km of 7.9 mM for ferulic acid. This enzyme also decarboxylated 4-hydroxycinnamic acid but not 2- or 3-hydroxycinnamic acid, indicating that a hydroxy group para to the carboxylic acid-containing side chain is required for the enzymatic reaction. The enzyme was inactivated by Hg2+, Cu2+, p-chloromercuribenzoic acid, and N-ethylmaleimide, suggesting that sulfhydryl groups are necessary for enzyme activity. Diethyl pyrocarbonate, a histidine-specific inhibitor, did not affect enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号