首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary We studied the potential zeitgeber qualities of periodic food availability on the circadian rhythms of locomotor and feeding activity of house sparrows. The birds were initially held in a LD-cycle of 12:12 h, with food restricted to the light phase. After transfer to constant dim light, the birds remained entrained by the restricted feeding schedule. Following an exposure to food ad libitum conditions, the rhythms could be re-synchronized by the feeding cycle. Shortening of the zeitgeber period to 23.5 h resulted in the loss of entrainment in most birds, whereas a longer zeitgeber period of 25 h re-entrained the rhythms of most birds. Although these results prove that periodic food availability can act as a zeitgeber for the circadian rhythms of house sparrows, several features of our data indicate that restricted feeding is only a weak zeitgeber. The pattern of feeding activity prior to the daily time of food access shown under some experimental conditions suggests that anticipation is due to a positive phase-angle difference of the birds' normal circadian system rather than being caused by a separate pacemaker.  相似文献   

2.
3.
The range of entrainment of the circadian rhythm of locomotor activity was compared in four groups of Syrian hamsters (eight animals per group) initially exposed to daily light-dark (LD) cycles with either abrupt transitions between light and darkness (LD-rectangular) or simulated twilights (LD-twilight). Lighting was provided by arrays of white light-emitting diodes; daytime illuminance (10 lux) and the total amount of light emitted per day were the same in the two conditions. The period (T) of the LD cycles was then gradually increased to 26.5 h or gradually decreased to 21.5 h, at the rate of 5 min/day. Under LD-rectangular, the upper and lower limits of entrainment were 25.0 to 25.5 h and 22.0 to 22.5 h, respectively, whereas under LD-twilight, 50% of the animals exposed to the lengthening cycles were still entrained at T = 26.5 h and 50% of those exposed to the shortening cycles were still entrained at T = 21.5 h. In a second experiment, two groups of hamsters were exposed to fixed T = 25 h LD-rectangular (n = 15) or LD-twilight cycles (n = 7). Only 33% of the animals entrained in LD-rectangular, whereas 86% of the animals entrained in LD-twilight. Free-running periods in constant darkness were longer following successful entrainment to T = 25 h but did not differ between the animals that entrained to LD-rectangular and those that entrained to LD-twilight. The widening of the range of entrainment observed in LD-twilight indicates that twilight transitions increase the strength of the LD zeitgeber. In LD-twilight, successful entrainment to T = 26.5 h was accompanied by an expansion of activity time to 16.52+/-1.22 h, with activity onsets preceding mid-dusk by 12.56+/-2.15 h. Together with earlier data showing similar phase response curves for hour-long dawn, dusk, and rectangular light pulses, these results suggest that the effect of twilights on the range of entrainment may involve parametric rather than nonparametric mechanisms.  相似文献   

4.
The accuracy with which a circadian pacemaker can entrain to an environmental 24-h zeitgeber signal depends on (a) characteristics of the entraining signal and (b) response characteristics and intrinsic stability of the pacemaker itself. Position of the sun, weather conditions, shades, and behavioral variations (eye closure, burrowing) all modulate the light signal reaching the pacemaker. A simple model of a circadian pacemaker allows researchers to explore the impact of these factors on pacemaker accuracy. Accuracy is operationally defined as the reciprocal value of the day-to-day standard deviation of the clock times at which a reference phase (0) is reached. For the purpose of this exploration, the authors used a model pacemaker characterized solely by its momentary phase and momentary velocity. The average velocity determines the time needed to complete one pacemaker cycle and, therefore, is inversely proportional to pacemaker period. The model pacemaker responds to light by shifting phase and/or changing its velocity. The authors assumed further that phase and velocity show small random fluctuations and that the velocity is subject to aftereffects. Aftereffects were incorporated mathematically in a term allowing period to contract exponentially to a stable steady-state value, with a time constant of 69 d in the absence of light. The simulations demonstrate that a pacemaker reaches highest accuracy when it responds to light by simultaneous phase shifts and changes of its velocity. Phase delays need to coincide with slowing down and advances with speeding up; otherwise, no synchronization to the zeitgeber occurs. At maximal accuracy, the changes in velocity are such that the average period of the pacemaker under entrained conditions equals 24 h. The results suggest that during entrainment, the pacemaker adjusts its period to 24 h, after which daily phase shifts to compensate for differences between the periods of the zeitgeber and the clock are no longer necessary. On average, phase shifts compensate for maladjustments of phase and velocity changes compensate for maladjustments of period.  相似文献   

5.
The goal of this study was to provide an example of nonsocial and nonphotic entrainment in Syrian hamsters, together with a corresponding phase response curve (PRC). Fourteen male hamsters were given 2-hr bouts of induced activity (mostly wheel running) at 23.83-hr intervals in constant darkness (DD). The activity onsets of 10 hamsters entrained to this manipulation, with no anticipatory activity present. After entrainment, the rhythms resumed free-running from a time 0.66-3.91 hr after the onset of the last bout of induced activity. Postentrainment free-running periods were shorter than pre-entrainment values. The PRC for 2-hr pulses of induced activity in DD revealed phase advances induced in some animals between circadian time (CT) 4 and CT 11 (approximately the last half of the hamsters' rest period), and delays between CT 23 and CT 3 and between CT 17 and CT 20. The CTs for phase advances are compatible with the phase angle differences observed between rhythm and zeitgeber at the end of entrainment. Many features of the results (not all animals entraining, PRC characteristics, lack of observable anticipation to the daily stimuli, phase relationship between zeitgeber and activity rhythms) are similar to those from a previous study on social entrainment in this species (Mrosovsky, 1988). These similarities reinforce the idea that induced activity and social zeitgebers act on activity rhythms via a common mechanism.  相似文献   

6.
Nonphotic entrainment in humans?   总被引:3,自引:0,他引:3  
Although light is accepted as the dominant zeitgeber for entrainment of the human circadian system, there is evidence that nonphotic stimuli may play a role. This review critically assesses the current evidence in support of nonphotic entrainment in humans. Studies involving manipulations of sleep-wake schedules, exercise, mealtimes, and social stimuli are re-examined, bearing in mind the fact that the human circadian clock is sensitive to very dim light and has a free-running period very close to 24 h. Because of light confounds, the study of totally blind subjects with free-running circadian rhythms represents the ideal model to investigate the effects of nonphotic stimuli on circadian phase and period. Strong support for nonphotic entrainment in humans has already come from the study of a few blind subjects with entrained circadian rhythms. However, in these studies the nonphotic stimulus(i) responsible was not identified. The effect of appropriately timed exercise or exogenous melatonin represents the best proof to date of an effect of nonphotic stimuli on human circadian timing. Phase-response curves for both exercise and melatonin have been constructed. Given the powerful effect of feeding as a circadian zeitgeber in various nonhuman species, studies of meal timing are recommended. In conclusion, the available evidence indicates that it remains worthwhile to continue to study nonphotic effects on human circadian timing to identify treatment strategies for shift workers and transmeridian travelers as well as for the blind and possibly the elderly.  相似文献   

7.
Light and temperature entrainment of a locomotor rhythm in honeybees   总被引:1,自引:0,他引:1  
Abstract. The circadian locomotor (walking) rhythms of forager honeybees (Apis mellifera ligustica L.) were entrained to eight different 24 h light-dark cycles. The phases of activity onset, peak activity, and offset were correlated with the lights-off transition, suggesting lights-off as the primary zeitgeber for the rhythm. Further support for this hypothesis was provided by LD 1:23 experiments, in which entrainment occurred when the light pulse was situated at the end, but not at the beginning, of the subjective photophase. Steady-state entrainment of the locomotor rhythm was achieved with square-wave temperature cycles of 10oC amplitude under constant dark: most of the activity occurred within the early thermophase. Smaller amplitude temperature cycles yielded relative coordination of the rhythm. Interactions of temperature and light-dark cycles resulted in entrainment patterns different from those elicited in response to either cycle alone or those formed by a simple combination of the two separate responses. Furthermore, temperature cycles having amplitudes insufficient for entrainment of the rhythm nevertheless modified the pattern of entrainment to light - dark cycles, suggesting a synergism of light and temperature effects on the underlying circadian clock system.  相似文献   

8.
Social interactions between conspecifics is a type of nonphotic zeitgeber common to several species. In the diurnal rodent Octodon degus, social interactions enhance reentrainment after phase shifts and can act as a weak zeitgeber. Olfactory stimuli appear necessary for these effects since bulbectomy eliminates socially enhanced reentrainment. In Experiment 1, the authors examined whether stimulation of the main olfactory system was sufficient to enhance reentrainment after 6-h phase advances and delays in the adult female O. degus. When test animals received conspecific odor cues during reentrainment, they entrained 39% faster after phase advances (p < 0.05) and 33% faster after phase delays (p < 0.001) than when they did not receive odor cues. Thus, olfactory cues from distant female donors were sufficient to enhance rates of entrainment in female O. degus and provided results equivalent to earlier studies with donors and shifters housed in the cages together. In Experiment 2, the authors examined whether discrete 3-h and 1-h daily pulses of airborne odors from a group of 5 entrained female degus would be sufficient to produce entrainment of wheel-running activity in adult female conspecifics. During the period of exposure to 3-h pulses, 50% (4/8) of the subjects temporarily entrained to a 24-h cycle, while 12.5% (1/8) of the subjects fully entrained. Exposure to 1-h pulses allowed 37.5% (3/8) of the subjects to temporarily entrain and 12.5% (1/8) of the subjects to fully entrain. Duration of entrained episodes was positively correlated with psi, daily onset of activity with respect to the timing of odor exposure (Pearson r = 0.731; p < 0.05), such that animals with the entraining odor pulse beginning during subjective day (psi = 7.8 h, CT 7.8 +/- 1.4) had longer periods of entrainment (22.2 +/- 5.6 days) than animals with the entraining pulse occurring during subjective night (psi = -4.6 h; CT 19.4 +/- 0.9; 5.6 +/- 0.9 days; p < 0.001). In addition, for each animal, the combined duration of all episodes of 24-h entrainment correlated with increased period length (tau) of free-running rhythms (Pearson r = 0.733; p < 0.05). Thus, daily discrete pulses of odors with durations of either 1 or 3 h from female conspecifics were sufficient to produce both temporary and full entrainment to a 24-h cycle in the majority of female O. degus, and the likelihood of long periods of entrainment correlated with long taus and coordination of the odor pulse with mid subjective day.  相似文献   

9.
The entrainment behaviour of the circadian rhythm of locomotor activity in the field mouse Mus booduga was studied in order to evaluate the role of the animals' free-running period (τ) and the duration of skeleton photoperiods in determining entrainment of animals with τ values beyond and close to the “limits of entrainment”. We predicted that animals with τ lesser than the lower “limit of entrainment” would entrain only to short skeleton photoperiods (≤ 6 h) and not to longer skeleton photoperiods. Experimental animals (n = 25) were entrained to light/dark (LD) 12:12 h schedule, and then subjected to various skeleton photoperiods in which the duration of one of the two intervals of darkness was successively reduced while holding the zeitgeber period (T) constant. Some animals (n = 9) entrained to long as well as short photoperiods, whereas others (n = 5) entrained only to extremely short skeleton photoperiods of 6 h or less. The mean τ of the animals entraining to all photoperiods (23.78 ± 0.22 h) was significantly greater than that of the animals that entrained only to very short skeleton photoperiods (22.43 ± 0.41 h) (t df 12 = 5.3, p < 0.001). We also selected a few animals (n = 11) with average τ value of 23.13 ± 0.38 h and studied them under several skeleton photoperiods. To our surprise the animals which were subjected to restricted dark intervals invariably underwent “phase-jump” assuming the longer dark interval as “subjective night”. We suggest that the observed variation in entrainment behaviour might be due to the variation seen among individual animals in τ and the shape of their PRC. These results support the view that the duration of the skeleton photoperiod and the τ of an individual animal interact to determine its entrainment, and underscore the relevance of inter-individual variation in circadian organisation to studies of circadian rhythms.  相似文献   

10.
The cuticle deposition rhythm, which is observed in the apodeme of the furca in the thorax, is controlled by a peripheral circadian clock in the epidermal cells and entrained to light-dark (LD) cycles via CRYPTOCHROME (CRY) in Drosophila melanogaster. In the present study, we examined the effects of temperature (TC) cycles and the combination of LD and TC cycles on entrainment of the cuticle deposition rhythm. The rhythm was entrained to TC cycles, whose period was 28 h. In T = 21 and 24 h, the rhythm was entrained to TC cycles in some individuals. CRY is not necessary for temperature entrainment of the cuticle deposition rhythm because the rhythm in cry(b) (lacking functional CRY) was entrained to TC cycles. Temperature entrainment of the rhythm was achieved even when the thoraxes or furcae were cultured in vitro, suggesting that the mechanism for temperature entrainment is independent of the central clock in the brain and the site of the thermoreception resides in the epidermal cells. When LD and TC cycles with different periods were applied, the rhythm was entrained to LD cycles with a slight influence of TC cycles. Thus, the LD cycle is a stronger zeitgeber than the TC cycle. The variance of the number of the cuticle layers decreased in the flies kept under LD and TC cycles with the same period in which the thermophase coincided with the photophase. Therefore, we conclude that LD and TC cycles synergistically entrain the rhythm. Synergistic effects of LD and TC cycles on entrainment were also observed even when the thoraxes were cultured in vitro, suggesting that the light and temperature information is integrated within the peripheral circadian system.  相似文献   

11.
We studied locomotor activity rhythms of C57/Bl6 mice under a chronic jet lag (CJL) protocol (ChrA(6/2) ), which consisted of 6-hour phase advances of the light-dark schedule (LD) every 2 days. Through periodogram analysis, we found 2 components of the activity rhythm: a short-period component (21.01 ± 0.04 h) that was entrained by the LD schedule and a long-period component (24.68 ± 0.26 h). We developed a mathematical model comprising 2 coupled circadian oscillators that was tested experimentally with different CJL schedules. Our simulations suggested that under CJL, the system behaves as if it were under a zeitgeber with a period determined by (24 - [phase shift size/days between shifts]). Desynchronization within the system arises according to whether this effective zeitgeber is inside or outside the range of entrainment of the oscillators. In this sense, ChrA(6/2) is interpreted as a (24 - 6/2 = 21 h) zeitgeber, and simulations predicted the behavior of mice under other CJL schedules with an effective 21-hour zeitgeber. Animals studied under an asymmetric T = 21 h zeitgeber (carried out by a 3-hour shortening of every dark phase) showed 2 activity components as observed under ChrA(6/2): an entrained short-period (21.01 ± 0.03 h) and a long-period component (23.93 ± 0.31 h). Internal desynchronization was lost when mice were subjected to 9-hour advances every 3 days, a possibility also contemplated by the simulations. Simulations also predicted that desynchronization should be less prevalent under delaying than under advancing CJL. Indeed, most mice subjected to 6-hour delay shifts every 2 days (an effective 27-hour zeitgeber) displayed a single entrained activity component (26.92 ± 0.11 h). Our results demonstrate that the disruption provoked by CJL schedules is not dependent on the phase-shift magnitude or the frequency of the shifts separately but on the combination of both, through its ratio and additionally on their absolute values. In this study, we present a novel model of forced desynchronization in mice under a specific CJL schedule; in addition, our model provides theoretical tools for the evaluation of circadian disruption under CJL conditions that are currently used in circadian research.  相似文献   

12.
13.
The fly Drosophila melanogaster possesses five photoreceptors and/or photopigments that appear to be involved in light reception and synchronization of the circadian clock: (1) the compound eyes, (2) the ocelli, (3) the Hofbauer-Buchner eyelets, (4) the blue-light photopigment cryptochrome, and (5) unknown photopigments in the clock-gene-expressing dorsal neurons. To understand the contributions of these photoreceptors and photopigments to synchronization, the authors monitored the flies' activity rhythms under artificial long and short days. They found that all the different photoreceptors and photopigments contribute significantly to entrainment under each photoperiod, but the compound eyes are especially important for entrainment to extreme photoperiods. The compound eyes are, furthermore, necessary for adjusting the phase of the activity rhythm, for distinguishing long days from constant light, and for the normal masking effects of light--namely, promotion of activity by lights-on and inhibition of activity by darkness. Cryptochrome is important for period lengthening under long days, although it is more important for entrainment to short days than to long days and is, furthermore, important for aftereffects of the photoperiod on the internal clock. The specific roles of the remaining photoreceptors are more difficult to assess.  相似文献   

14.
While light is considered the dominant stimulus for entraining (synchronizing) mammalian circadian rhythms to local environmental time, social stimuli are also widely cited as 'zeitgebers' (time-cues). This review critically assesses the evidence for social influences on mammalian circadian rhythms, and possible mechanisms of action. Social stimuli may affect circadian behavioural programmes by regulating the phase and period of circadian clocks (i.e. a zeitgeber action, either direct or by conditioning to photic zeitgebers), by influencing daily patterns of light exposure or modulating light input to the clock, or by associative learning processes that utilize circadian time as a discriminative or conditioned stimulus. There is good evidence that social stimuli can act as zeitgebers. In several species maternal signals are the primary zeitgeber in utero and prior to weaning. Adults of some species can also be phase shifted or entrained by single or periodic social interactions, but these effects are often weak, and appear to be mediated by social stimulation of arousal. There is no strong evidence yet for sensory-specific nonphotic inputs to the clock. The circadian phase-dependence of clock resetting to social stimuli or arousal (the 'nonphotic' phase response curve, PRC), where known, is distinct from that to light and similar in diurnal and nocturnal animals. There is some evidence that induction of arousal can modulate light input to the clock, but no studies yet of whether social stimuli can shift the clock by conditioning to photic cues, or be incorporated into the circadian programme by associative learning. In humans, social zeitgebers appear weak by comparison with light. In temporal isolation or under weak light-dark cycles, humans may ignore social cues and free-run independently, although cases of mutual synchrony among two or more group-housed individuals have been reported. Social cues may affect circadian timing by controlling sleep-wake states, but the phase of entrainment observed to fixed sleep-wake schedules in dim light is consistent with photic mediation (scheduled variations in behavioural state necessarily create daily light-dark cycles unless subjects are housed in constant dark or have no eyes). By contrast, discrete exercise sessions can induce phase shifts consistent with the nonphotic PRC observed in animal studies. The best evidence for social entrainment in humans is from a few totally blind subjects who synchronize to the 24 h day, or to near-24 h sleep-wake schedules under laboratory conditions. However, the critical entraining stimuli have not yet been identified, and there are no reported cases yet of social entrainment in bilaterally enucleated blind subjects. The role of social zeitgebers in mammalian behavioural ecology, their mechanisms of action, and their utility for manipulating circadian rhythms in humans, remains to be more fully elaborated.  相似文献   

15.
Circadian rhythms are endogenous 24 h cycles that persist in the absence of external time cues. These rhythms provide an internal representation of day length and optimize physiology and behaviour to the varying demands of the solar cycle. These clocks require daily adjustment to local time and the primary time cue (zeitgeber) used by most vertebrates is the daily change in the amount of environmental light (irradiance) at dawn and dusk, a process termed photoentrainment. Attempts to understand the photoreceptor mechanisms mediating non-image-forming responses to light, such as photoentrainment, have resulted in the discovery of a remarkable array of different photoreceptors and photopigment families, all of which appear to use a basic opsin/vitamin A-based photopigment biochemistry. In non-mammalian vertebrates, specialized photoreceptors are located within the pineal complex, deep brain and dermal melanophores. There is also strong evidence in fish and amphibians for the direct photic regulation of circadian clocks in multiple tissues. By contrast, mammals possess only ocular photoreceptors. However, in addition to the image-forming rods and cones of the retina, there exists a third photoreceptor system based on a subset of melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). In this review, we discuss the range of vertebrate photoreceptors and their opsin photopigments, describe the melanopsin/pRGC system in some detail and then finally consider the molecular evolution and sensory ecology of these non-image-forming photoreceptor systems.  相似文献   

16.
Circadian rhythms of hamsters can be phase-shifted or entrained by single or daily sessions of induced wheel running. In contrast, observations of rats under restricted-feeding schedules suggest that their free-running rhythms are not readily entrainable by a daily bout of intense activity. A formal test of this idea was made by subjecting rats to daily 2-hr or 3-hr sessions of forced treadmill activity. None of 18 rats entrained to a daily treadmill schedule when tested in constant dim light, but 1 of 16 did entrain when tested after blinding, when the period of its free-running activity rhythm was very close to the period of the treadmill schedule and when the onset of its daily active phase overlapped with the treadmill sessions. These conditions were recreated in a final group of eight rats; the rats were trained in a light-dark cycle, blinded, and subjected to a treadmill schedule with a period of 23.91 hr that was initiated at the onset of the rats' active phase on day 1. Six of these rats entrained. The mechanism for entrainment by activity schedules clearly exists in rats, but the conditions under which this occurs are highly constrained, suggesting that activity is a very weak zeitgeber in this species. It is argued that the evolution of functionally separable food- and light-entrainable oscillators in the rat demands a very low sensitivity to feedback effects of activity.  相似文献   

17.
The role of circadian clocks in timing daily behaviors is widely acknowledged, and while empirical evidence suggests that clock period is correlated with the preferred phase of a rhythmic behavior (chronotype), other clock properties have also been hypothesized to underlie chronotype variation. Here, we report that fruit fly Drosophila melanogaster populations exhibiting evening emergence chronotype (late) are characterized by higher incidence of behavioral arrhythmicity in constant dim light, wider range of entrainment, reduced rates of re-entrainment to simulated jet-lag and higher amplitude of both entrained and free-running rhythms as compared to those exhibiting morning emergence chronotype (early). Our results thus highlight the role of circadian clock properties such as zeitgeber sensitivity, amplitude and coupling in driving chronotype variation.  相似文献   

18.
Endogenous circadian rhythms observed under constant conditions normally show period length variations. However, a general trend is difficult to identify when cells or organisms are entrained with the usual 24-h-period light/dark cycles. Therefore, these variations in time have been considered as fluctuations. In order to gain more insight into this phenomenon, individual Acetabularia cells were exposed to light/dark cycles of 16 h (LD 8:8) and 33.6 h (LD 16.8:16.8), respectively, i.e., periods which lie distinctly outside the range of the normal circadian entrainment. Employing a high-resolution procedure for data analysis, decreasing period lengths could consistently be detected when cells were kept under constant conditions for several weeks. Possible causes of this decrease are discussed.  相似文献   

19.
Marine and estuarine crabs brood attached eggs, which hatch synchronously releasing larvae at precise times relative to environmental cycles. The subtidal crab Dyspanopeus sayi has a circadian rhythm, in which larvae are released within the 4-h interval after the time of ambient sunset. Previous studies demonstrated that the rhythm can be entrained by the light:dark cycle. Since subtidal crabs are also exposed to temperature fluctuations, an unstudied question was whether the circadian rhythm could be entrained by the diel temperature cycle. To answer this question, ovigerous D. sayi were entrained in darkness to 2.5, 5, and 10 °C temperature cycles that were reverse in phase from the ambient temperature cycle. After entrainment, larval release times were monitored in constant conditions of temperature and darkness with a time-lapse video system. The effectiveness of a temperature cycle to shift the timing of larval release increased as the magnitude of the temperature cycle increased and as crabs were exposed to increasing numbers of entrainment cycles. However, entrainment to a 10 °C cycle only lasted 2 days in constant conditions. When crabs were entrained to a light:dark vs. a 10 °C temperature cycle, the light:dark cycle was dominant for entrainment. Nevertheless, ovigerous crabs do sense temperature cycles and in areas where daylight is too low for entrainment, temperature cycles can be used to regulate the time of larval release.  相似文献   

20.
Circadian rhythms of locomotor activity of the desert beetles T.gigas were entrained with skeleton photoperiods (2x2 hr per circadian cycle 30 lx green LED light pulses). The Zeitgeber period was stepwise reduced by 1 hr down to 22 hr or increased up to 26 hr. Within the range of entrainment, the phase angle Ψ of a circadian rhythm with respect to light depends upon the period of Zeitgeber differently for the morning (M) and evening (E) peak: M is easier to advance, while E is easier to delay. Beyond the range of entrainment both peaks became free-running with some relative coordination. Masking (direct stimulation of activity by light) occurred only during the subjective night, and never in subjective day. In few cases one of two peaks became free-running while its counterpart remained entrained, suggesting that each of the two peaks has its own visual input and can be entrained by light. These results are in agreement with the difference in the PRC shape for the M and E peaks, and support the hypothesis that M and E peaks are controlled by two functionally separate oscillators that have polar different properties, and are extremely strongly mutually coupled with phases locked at about 180°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号