首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of human Ku70 with TRF2   总被引:19,自引:0,他引:19  
Song K  Jung D  Jung Y  Lee SG  Lee I 《FEBS letters》2000,481(1):81-85
Ku, a heterodimer of 70- and 80-kDa subunits, plays a general role in the metabolism of DNA ends in eukaryotic cells, including double-strand DNA break repair, V(D)J recombination, and maintenance of telomeres. We have utilized the yeast two-hybrid system to identify Ku70-interacting proteins other than Ku80. Two reactive clones were found to encode the dimerization domain of TRF2, a mammalian telomeric protein that binds to duplex TTAGGG repeats at chromosome ends. This interaction was confirmed using bacterial fusion proteins and co-immunoprecipitations from eukaryotic cells overexpressing TRF2. The transfected TFR2 colocalized with Ku70.  相似文献   

2.
A central region of Ku80 mediates interaction with Ku70 in vivo.   总被引:4,自引:0,他引:4       下载免费PDF全文
Ku, the DNA binding component of DNA-dependent protein kinase (DNA-PK), is a heterodimer composed of 70 and 86 kDa subunits, known as Ku70 and Ku80 respectively . Defects in DNA-PK subunits have been shown to result in a reduced capacity to repair DNA double-strand breaks. Assembly of the Ku heterodimer is required to obtain DNA end binding activity and association of the DNA-PK catalytic subunit. The regions of the Ku subunits responsible for heterodimerization have not been clearly defined in vivo . A previous study has suggested that the C-terminus of Ku80 is required for interaction with Ku70. Here we examine Ku subunit interaction using N- and C-terminal Ku80 deletions in a GAL4-based two-hybrid system and an independent mammalian in vivo system. Our two-hybrid study suggests that the central region of Ku80, not its C-terminus, is capable of mediating interaction with Ku70. To determine if this region mediates interaction with Ku70 in mammalian cells we transfected xrs-6 cells, which lack endogenous Ku80, with epitope-tagged Ku80 deletions carrying a nuclear localization signal. Immunoprecipitation from transfected cell extracts revealed that the central domain identified by the GAL4 two-hybrid studies stabilizes and co-immunoprecipitates with endogenous xrs-6 Ku70. The central interaction domain maps to the internally deleted regions of Ku80 in the mutant cell lines XR-V9B and XR-V15B. These findings indicate that the internally deleted Ku80 mutations carried in these cell lines are incapable of heterodimerization with Ku70.  相似文献   

3.
Ku70-Ku80 heterodimers promote the non-homologous end-joining (NHEJ) of DNA breaks and, as shown here, the fusion of dysfunctional telomeres. Paradoxically, this heterodimer is also located at functional mammalian telomeres and interacts with components of shelterin, the protein complex that protects telomeres. To determine whether Ku contributes to telomere protection, we analysed Ku70(-/-) mouse cells. Telomeres of Ku70(-/-) cells had a normal DNA structure and did not activate a DNA damage signal. However, Ku70 repressed exchanges between sister telomeres - a form of homologous recombination implicated in the alternative lengthening of telomeres (ALT) pathway. Sister telomere exchanges occurred at approximately 15% of the chromosome ends when Ku70 and the telomeric protein TRF2 were absent. Combined deficiency of TRF2 and another NHEJ factor, DNA ligase IV, did not elicit this phenotype. Sister telomere exchanges were not elevated at telomeres with functional TRF2, indicating that TRF2 and Ku70 act in parallel to repress recombination. We conclude that mammalian chromosome ends are highly susceptible to homologous recombination, which can endanger cell viability if an unequal exchange generates a critically shortened telomere. Therefore, Ku- and TRF2-mediated repression of homologous recombination is an important aspect of telomere protection.  相似文献   

4.
5.
6.
7.
Ku is a heterodimeric protein with high binding affinity for ends, nicks, and gaps in double-stranded DNA. Both in mammalian cells and in budding yeast, Ku plays a role in nonhomologous end joining in the double strand break repair pathway. However, Ku has a more significant role in DNA repair in mammalian cells compared with yeast, in which a homology-dependent pathway is the predominant one. Recently Ku has been shown to be a likely component of the telomeric complex in yeast, suggesting the possibility of a similar role for Ku at mammalian telomeres. However, long single-stranded G-rich overhangs are continuously present at mammalian but not at yeast telomeres. These overhangs have the potential to fold in vitro into G-G base-paired conformations, such as G-quartets, that might prevent Ku from recognizing telomeric ends and thus offer a mechanism to sequester the telomere from the prevalent double strand break repair pathway in mammals. We show here that Ku binds to mammalian telomeric DNA ends in vitro and that G-quartet conformations are unable to prevent Ku from binding with high affinity to the DNA. Our results indicate that the DNA binding characteristics of Ku are consistent with its direct interaction with telomeric DNA in mammalian cells and its proposed role as a telomere end factor.  相似文献   

8.
9.
10.
Bax induces mitochondrial-dependent cell death signals in mammalian cells. However, the mechanism of how Bax is kept inactive has remained unclear. Yeast-based functional screening of Bax inhibitors from mammalian cDNA libraries identified Ku70 as a new Bax suppressor. Bax-mediated apoptosis was suppressed by overexpression of Ku70 in mammalian cells, but enhanced by downregulation of Ku70. We found that Ku70 interacts with Bax, and that the carboxyl terminus of Ku70 and the amino terminus of Bax are required for this interaction. Bax is known to translocate from the cytosol to mitochondria when cells receive apoptotic stimuli. We found that Ku70 blocks the mitochondrial translocation of Bax. These results suggest that in addition to its previously recognized DNA repair activity in the nucleus, Ku70 has a cytoprotective function in the cytosol that controls the localization of Bax.  相似文献   

11.
12.
13.
Cenci G  Ciapponi L  Gatti M 《Chromosoma》2005,114(3):135-145
Drosophila telomeres are maintained by transposition of specialized retrotransposons rather than by telomerase activity, and their stability is independent of the sequence of DNA termini. Recent studies have identified several proteins that protect Drosophila telomeres from fusion events. These proteins include the telomere capping factors HP1/ORC-associated protein (HOAP) and heterochromatin protein 1 (HP1), the Rad50 and Mre11 DNA repair proteins that are required for HOAP and HP1 localization at telomeres, and the ATM kinase. Another telomere-protecting factor identified in Drosophila is UbcD1, a polypeptide highly homologous to class I ubiquitin-conjugating E2 enzymes. In addition, it has been shown that HP1 and both components of the Drosophila Ku70/80 heterodimer act as negative regulators of telomere length. Except for HOAP, all these proteins are conserved in humans and are associated with human telomeres. Collectively, these results indicate that Drosophila is an excellent model system for the analysis of the mechanisms of telomere maintenance. In past and current studies, 15 Drosophila genes have been identified that prevent telomeric fusion, and it has been estimated that the Drosophila genome contains at least 40 genes required for telomere protection. We believe that the molecular characterization of these genes will lead to identification of many novel human genes with roles in telomere maintenance.  相似文献   

14.
15.
Protection of telomeres by the Ku protein in fission yeast   总被引:14,自引:0,他引:14       下载免费PDF全文
Schizosaccharomyces pombe cells survive loss of telomeres by a unique pathway of chromosome circularization. Factors potentially involved in this survival mechanism include the heterodimeric Ku protein and ligase IV, both of which are involved in the repair of DNA double-strand breaks in mammalian cells. Furthermore, Ku plays a role in telomere maintenance as well as in DNA double-strand break repair in Saccharomyces cerevisiae. We have identified Ku and ligase IV homologues in S. pombe and analyzed their functions during normal growth and in cells undergoing senescence. In the absence of either a Ku subunit (pku70(+)) or ligase IV (lig4(+)), nonhomologous DNA end-joining was severely reduced. Lack of functional Ku led to shorter but stable telomeres and caused striking rearrangements of telomere-associated sequences, indicating a function for Ku in inhibiting recombinational activities near chromosome ends. In contrast to S. cerevisiae, concurrent deletion of pku70(+) and the gene for the catalytic subunit of telomerase (trt1(+)) was not lethal, allowing for the first time the dissection of the roles of Ku during senescence. Our results support a model in which Ku protects chromosome termini from nucleolytic and recombinational activities but is not involved in the formation of chromosome end fusions during senescence. The conclusion that nonhomologous end-joining is not required for chromosome circularization was further supported by analysis of survivors in strains lacking the genes for both trt1(+) and lig4(+).  相似文献   

16.
The major pathway in mammalian cells for repairing DNA double-strand breaks (DSB) is via nonhomologous end joining. Five components function in this pathway, of which three (Ku70, Ku80, and the DNA-dependent protein kinase catalytic subunit [DNA-PKcs]) constitute a complex termed DNA-dependent protein kinase (DNA-PK). Mammalian Ku proteins bind to DSB and recruit DNA-PKcs to the break. Interestingly, besides their role in DSB repair, Ku proteins bind to chromosome ends, or telomeres, protecting them from end-to-end fusions. Here we show that DNA-PKcs(-/-) cells display an increased frequency of spontaneous telomeric fusions and anaphase bridges. However, DNA-PKcs deficiency does not result in significant changes in telomere length or in deregulation of the G-strand overhang at the telomeres. Although less severe, this phenotype is reminiscent of the one recently described for Ku86-defective cells. Here we show that, besides DNA repair, a role for DNA-PKcs is to protect telomeres, which in turn are essential for chromosomal stability.  相似文献   

17.
18.
19.
20.
Two key components of mammalian heterochromatin that play a structural role in higher order chromatin organization are the heterochromatin protein 1alpha (HP1alpha) and the linker histone H1. Here, we show that these proteins interact in vivo and in vitro through their hinge and C-terminal domains, respectively. The phosphorylation of H1 by CDK2, which is required for efficient cell cycle progression, disrupts this interaction. We propose that phosphorylation of H1 provides a signal for the disassembly of higher order chromatin structures during interphase, independent of histone H3-lysine 9 (H3-K9) methylation, by reducing the affinity of HP1alpha for heterochromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号