首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidative refolding of ribonuclease A has been investigated in several experimental conditions using a variety of redox systems. All these studies agree that the formation of disulfide bonds during the process occurs through a nonrandom mechanism with a preferential coupling of certain cysteine residues. We have previously demonstrated that in the presence of glutathione the refolding process occurs through the reiteration of two sequential reactions: a mixed disulfide with glutathione is produced first which evolves to form an intramolecular S-S bond. In the same experimental conditions, protein disulfide isomerase (PDI) was shown to catalyze formation and reduction of mixed disulfides with glutathione as well as formation of intramolecular S-S bonds. This paper reports the structural characterization of the one-disulfide intermediate population during the oxidative refolding of Ribonuclease A under the presence of PDI and glutathione with the aim of defining the role of the enzyme at the early stages of the reaction. The one-disulfide intermediate population occurring at the early stages of both the uncatalyzed and the PDI-catalyzed refolding was purified and structurally characterized by proteolytic digestion followed by MALDI-MS and LC/ESIMS analyses. In the uncatalyzed refolding, a total of 12 disulfide bonds out of the 28 theoretical possible cysteine couplings was observed, confirming a nonrandom distribution of native and nonnative disulfide bonds. Under the presence of PDI, only two additional nonnative disulfides were detected. Semiquantitative LC/ESIMS analysis of the distribution of the S-S bridged peptides showed that the most abundant species were equally populated in both the uncatalyzed and the catalyzed process. This paper shows the first structural characterization of the one-disulfide intermediate population formed transiently during the refolding of ribonuclease A in quasi-physiological conditions that mimic those present in the ER lumen. At the early stages of the process, three of the four native disulfides are detected, whereas the Cys26-Cys84 pairing is absent. Most of the nonnative disulfide bonds identified are formed by nearest-neighboring cysteines. The presence of PDI does not significantly alter the distribution of S-S bonds, suggesting that the ensemble of single-disulfide species is formed under thermodynamic control.  相似文献   

2.
The major oxidative folding pathways of bovine pancreatic ribonuclease A at pH 8.0 and 25 degrees C involve a pre-equilibrium steady state among ensembles of intermediates with zero, one, two, three and four disulfide bonds. The rate-determining steps are the reshuffling of the unstructured three-disulfide ensemble to two native-like three-disulfide species, des-[65-72] and des-[40-95], that convert to the native structure during oxidative formation of the fourth disulfide bond. Under the same regeneration conditions, with oxidized and reduced DTT, used previously for kinetic oxidative-folding studies of this protein, the addition of 4 microM protein disulfide isomerase (PDI) was found to lead to catalysis of each disulfide-formation step, including the rate-limiting rearrangement steps in which the native-like intermediates des-[65-72] and des-[40-95] are formed. The changes in the distribution of intermediates were also determined in the presence and absence of PDI at three different temperatures (with the DTT redox system) as well as at 25 degrees C (with the glutathione redox system). The results indicate that the acceleration of the formation of native protein by PDI, which we observed earlier, is due to PDI catalysis of each of the intermediate steps without changing the overall pathways or folding mechanism.  相似文献   

3.
A 30-residue peptide was obtained from ribonuclease A by chemical cleavage with cyanogen bromide, subsequent sulfitolysis with concomitant S-sulfonation, and finally enzymatic cleavage withStaphylococcus aureus protease. The peptide was converted to the free thiol form by reductive cleavage of the S-sulfo-protecting groups withd,l-dithiothreitol. This peptide consisted of residues 50–79 of the native sequence of ribonuclease A, with the exception that methionine-79 had been converted to homoserine. Included in this sequence are residues cysteine-65 and cysteine-72, which form a disulfide bond in the native enzyme, as well as cysteine-58. This molecule may form one of three possible intramolecular disulfide bonds upon thiol oxidation, viz. one loop of 15 and 2 of 8 residues each. These isomeric peptides were prepared by oxidation with cystamine, 2-aminoethanethiolation of residual thiols, and fractionation by reverse-phase high-performance liquid chromatography. Disulfide pairings were established by mapping the tryptic fragments and confirming their composition by amino acid analysis. After protracted incubation under oxidizing conditions at 25.0°C andp H 8.0, the 26-member ring incorporating the native disulfide bond between residues 65 and 72 is the dominant product. Assuming that equilibrium is established, we infer that local interactions in the sequence of ribonuclease A significantly stabilize the native 8-residue disulfide loop with respect to the non-native 8-residue loop (G°=–1.1±0.1 kcal mole–1). The implications of this observation for the oxidative folding of the intact protein are discussed.  相似文献   

4.
Shin HC  Song MC  Scheraga HA 《FEBS letters》2002,520(1-3):77-80
To address the effect of an agglutogen on virus infection, we studied the avidin-associated inhibition of infection by biotinylated M13 phages (BIO-phages). Microscopic observation of mixtures of BIO-phages and avidin–fluorescein conjugates revealed many aggregates. Even at low phage concentrations, avidin induced inhibition of infection significantly. Anti-M13 phage antibody also made aggregates and inhibited the infection but in a different manner from avidin. The inhibition by avidin was at ≥2 μg/ml, time dependent and marked until 10 min after the mixing of the BIO-phages and Escherichia coli. On the other hand, antibody inhibited the infection at ≥0.1 μg/ml dose dependently, and the inhibition was time dependent and marked until 45 min after the mixing at moderate and low phage concentrations. These results indicate that avidin against BIO-phages and antibodies are agglutogens, and the inhibition of the BIO-phages by avidin is closely related to the tetramerization of avidin. Agglutogens may be novel alternative antiviral drugs.  相似文献   

5.
Protein disulfide isomerase (PDI), an essential folding catalyst and chaperone of the endoplasmic reticulum (ER), has four structural domains (a-b-b'-a'-) of approximately equal size. Each domain has sequence or structural homology with thioredoxin. Sedimentation equilibrium and velocity experiments show that PDI is an elongated monomer (axial ratio 5.7), suggesting that the four thioredoxin domains are extended. In the presence of physiological levels (<1 mM) of Zn(2+) and other thiophilic divalent cations such as Cd(2+) and Hg(2+), PDI forms a stable dimer that aggregates into much larger oligomeric forms with time. The dimer is also elongated (axial ratio 7.1). Oligomerization involves the interaction of Zn(2+) with the cysteines of PDI. PDI has active sites in the N-terminal (a) and C-terminal (a')thioredoxin domains, each with two cysteines (CGHC). Two other cysteines are found in one of the internal domains (b'). Cysteine to serine mutations show that Zn(2+)-dependent dimerization occurs predominantly by bridging an active site cysteine from either one of the active sites with one of the cysteines in the internal domain (b'). The dimer incorporates two atoms of Zn(2+) and exhibits 50% of the isomerase activity of PDI. At longer times and higher PDI concentrations, the dimer forms oligomers and aggregates of high molecular weight (>600 kDa). Because of a very high concentration of PDI in the ER, its interaction with divalent ions could play a role in regulating the effective concentration of these metal ions, protecting against metal toxicity, or affecting the activity of other (ER) proteins that use Zn(2+) as a cofactor.  相似文献   

6.
The folding of ribonuclease A (RNase A) has been extensively studied by characterizing the disulfide containing intermediates using different experimental conditions and analytical techniques. So far, some aspects still remain unclear such as the role of the loop 65-72 in the folding pathway. We have studied the oxidative folding of a RNase A derivative containing at position 67 the substitution Asn --> isoAsp where the local structure of the loop 65-72 has been modified keeping intact the C65-C72 disulfide bond. By comparing the folding behavior of this mutant to that of the wild-type protein, we found that the deamidation significantly decreases the folding rate and alters the folding pathway of RNase A. Results presented here shed light on the role of the 65-72 region in the folding process of RNase A and also clarifies the effect of the deamidation on the folding/unfolding processes. On a more general ground, this study represents the first characterization of the intermediates produced along the folding of a deamidated protein.  相似文献   

7.
Simultaneous presence of two chaperones, GroEL and protein disulfide isomerase (PDI), assists the reactivation of denatured D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in an additive way. Delayed addition of chaperones to the refolding solution after dilution of denatured GAPDH indicates an interaction with intermediates formed mainly in the first 5 min for PDI and formed within a longer time period for GroEL-ATP. The above indicate that the two chaperones interact with different folding intermediates of GAPDH. After delayed addition of one chaperone to the refolding mixture containing the other at 4°C, GroEL binds with all GAPDH intermediates dissociated from PDI, and PDI interacts with the intermediates released from GroEL during the first 10–20 min. It is suggested that the GAPDH folding intermediates released from the chaperone-bound complex are still partially folded so as to be rebound by the other chaperone. The above results clearly support the network model of GroEL and PDI.  相似文献   

8.
Two very different mechanisms of folding have been proposed from experimental studies of disulfide formation in reduced ribonuclease A. (1) A pathway in which the rate-limiting step separates fully folded protein from all other disulfide intermediates and occurs solely in three-disulfide intermediates. (2) A multiple pathway mechanism with different rate-limiting steps for each pathway. The various rate-limiting steps involve disulfide breakage, formation, and rearrangement in intermediates with one, two, three, and four protein disulfides. To distinguish between these two mechanisms, we have carried out further studies of both unfolding and refolding. Refolding of reduced ribonuclease A requires three-disulfide intermediates to accumulate; negligible refolding occurs when only the nearly random one- and two-disulfide intermediate species are populated. Therefore, no rate-limiting steps of the type postulated in mechanism (2) occur in intermediates with one and two protein disulfides. Unfolding and disulfide reduction is an all-or-none process; no disulfide intermediates accumulate to detectable levels or precede the rate-limiting step. Mechanism (2) requires that such intermediates precede the rate-limiting step and accumulate to substantial levels. The different proposals were shown not to result from the use of different solution conditions or disulfide reagents; the two sets of data are not inconsistent. Instead, the inappropriate mechanism (2) resulted from an incorrect kinetic analysis and misinterpretation of the kinetics of disulfide formation and breakage.  相似文献   

9.
The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein–protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER.  相似文献   

10.
Protein-disulfide isomerase (PDI) is a catalyst of folding of disulfide-bonded proteins and also a multifunctional polypeptide that acts as the beta-subunit in the prolyl 4-hydroxylase alpha(2)beta(2)-tetramer (P4H) and the microsomal triglyceride transfer protein alphabeta-dimer. The principal peptide-binding site of PDI is located in the b' domain, but all domains contribute to the binding of misfolded proteins. Mutations in the C-terminal part of the a' domain have significant effects on the assembly of the P4H tetramer and other functions of PDI. In this study we have addressed the question of whether these mutations in the C-terminal part of the a' domain, which affect P4H assembly, also affect peptide binding to PDI. We observed a strong correlation between P4H assembly competence and peptide binding; mutants of PDI that failed to form a functional P4H tetramer were also inactive in peptide binding. However, there was also a correlation between inactivity in these assays and indicators of conformational disruption, such as protease sensitivity. Peptide binding activity could be restored in inactive, protease-sensitive mutants by selective proteolytic removal of the mutated a' domain. Hence we propose that structural changes in the a' domain indirectly affect peptide binding to the b' domain.  相似文献   

11.
The Tyr92-Pro93 peptide group of bovine pancreatic ribonuclease A (RNase A) exists in the cis conformation in the native state. From unfolding/refolding kinetic studies of the disulfide-intact wild-type protein and of a variant in which Pro93 had been replaced by Ala, it had been suggested that the Tyr92-Ala93 peptide group also exists in the cis conformation in the native state. Here, we report the crystal structure of the P93A variant. Although there is disorder in the region of residues 92 and 93, the best structural model contains a cis peptide at this position, lending support to the results of the kinetics experiments. We also report the crystal structure of the C[40, 95]A variant, which is an analog of the major rate-determining three-disulfide intermediate in the oxidative folding of RNase A, missing the 40-95 disulfide bond. As had been detected by NMR spectroscopy, the crystal structure of this analog shows disorder in the region surrounding the missing disulfide. However, the global chain fold of the remainder of the protein, including the disulfide bond between Cys65 and Cys72, appears to be unaffected by the mutation.  相似文献   

12.
We have introduced two disulfide crosslinks into the loop regions on opposite ends of the beta barrel in superfolder green fluorescent protein (GFP) in order to better understand the nature of its folding pathway. When the disulfide on the side opposite the N/C‐termini is formed, folding is 2× faster, unfolding is 2000× slower, and the protein is stabilized by 16 kJ/mol. But when the disulfide bond on the side of the termini is formed we see little change in the kinetics and stability. The stabilization upon combining the two crosslinks is approximately additive. When the kinetic effects are broken down into multiple phases, we observe Hammond behavior in the upward shift of the kinetic m‐value of unfolding. We use these results in conjunction with structural analysis to assign folding intermediates to two parallel folding pathways. The data are consistent with a view that the two fastest transition states of folding are "barrel closing" steps. The slower of the two phases passes through an intermediate with the barrel opening occurring between strands 7 and 8, while the faster phase opens between 9 and 4. We conclude that disulfide crosslink‐induced perturbations in kinetics are useful for mapping the protein folding pathway.  相似文献   

13.
The effects of the strong stabilizing anion, phosphate, on the oxidative folding of bovine pancreatic ribonuclease A were examined. Phosphate was found to catalyze several steps involved in the oxidative folding process at pH 8.0 and 25°C, resulting in an increase in the rate of pre-equilibration of unstructured species on the folding pathway. In the presence of 400 mM phosphate, the overall increase in the rate of regeneration of native protein was caused primarily by the increased formation and stabilization of tertiary structure in the nativelike intermediates, des-[40-95] and des-[65-72], involved in the rate-determining step. Based on the regeneration of native protein and the stability of Cys Ala substituted mutant analogs of the des-species, (C40A, C95A) and (C65A, C72A), it is suggested that the primary role of phosphate is to catalyze the overall regeneration of native protein through nonspecific electrostatic and hydrogen-bonding effects on the protein and solvent.  相似文献   

14.
The refolding kinetics of guanidine-denatured disulfide-intact bovine pancreatic ribo-nuclease A (RNase A) and its proline-42-to-alanine mutant (Pro42Ala) have been studied by monitoring tyrosine burial and 2-cytidine monophosphate (2CMP) inhibitor binding. The folding rate for wild-type RNase A is faster in the presence of the inhibitor 2CMP than in its absence, indicating that the transition-state structure in the rate-determining step is stabilized by 2CMP. The folding rate monitored by 2CMP binding to the major slow-folding species of Pro42Ala RNase A is faster than the folding rate monitored by tyrosine burial; however, the folding rate monitored by inhibitor binding to the minor slow-folding species is decreased significantly over the folding rate monitored by tyrosine burial, indicating that the major and minor slow-folding species of Pro42Ala fold to the native state with different transition-state conformations in the rate-determining step.  相似文献   

15.
We have studied the mobility of the multidomain folding catalyst, protein disulfide isomerase (PDI), by a coarse‐graining approach based on flexibility. We analyze our simulations of yeast PDI (yPDI) using measures of backbone movement, relative positions and orientations of domains, and distances between functional sites. We find that there is interdomain flexibility at every interdomain junction but these show very different characteristics. The extent of interdomain flexibility is such that yPDI's two active sites can approach much more closely than is found in crystal structures—and indeed hinge motion to bring these sites into proximity is the lowest energy normal mode of motion of the protein. The flexibility predicted for yPDI (based on one structure) includes the other known conformation of yPDI and is consistent with (i) the mobility observed experimentally for mammalian PDI and (ii) molecular dynamics. We also observe intradomain flexibility and clear differences between the domains in their propensity for internal motion. Our results suggest that PDI flexibility enables it to interact with many different partner molecules of widely different sizes and shapes, and highlights considerable similarities of yPDI and mammalian PDI. Proteins 2016; 84:1776–1785. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
The change in heat capacity deltaCp for the folding of ribonuclease A was determined using differential scanning calorimetry and thermal denaturation curves. The methods gave equivalent results, deltaCp = 1.15+/-0.08 kcal mol(-1) K(-1). Estimates of the conformational stability of ribonuclease A based on these results from thermal unfolding are in good agreement with estimates from urea unfolding analyzed using the linear extrapolation method.  相似文献   

17.
H C Shin  H A Scheraga 《FEBS letters》1999,456(1):143-145
The role of protein disulfide isomerase (PDI) in the regeneration of ribonuclease A with dithiothreitol (DTT) was investigated at three different temperatures. The rates of formation of the native protein were markedly increased in the presence of PDI, 9-fold at 15 degrees C, 6-fold at 25 degrees C and 62-fold at 37 degrees C, respectively. In the presence of PDI, major changes were found in the distribution of intermediates in the three-disulfide region at 25 and 15 degrees C and also in the one-disulfide region at 15 degrees C, with the fast accumulation of the two native-like species des-[65-72] and des-[40-95]. The present results indicate that PDI does not alter the two major parallel pathways involving des-[65-72] and des-[40-95] in the regeneration of ribonuclease A with DTT.  相似文献   

18.
The gene-3 protein (G3P) of filamentous phages is essential for the infection of Escherichia coli. The carboxy-terminal domain anchors this protein in the phage coat, whereas the two amino-terminal domains N1 and N2 protrude from the phage surface. We analyzed the folding mechanism of the two-domain fragment N1-N2 of G3P (G3P(*)) and the interplay between folding and domain assembly. For this analysis, a variant of G3P(*) was used that contained four stabilizing mutations (IIHY-G3P(*)). The observed refolding kinetics extend from 10 ms to several hours. Domain N1 refolds very rapidly (with a time constant of 9.4 ms at 0.5 M guanidinium chloride, 25 degrees C) both as a part of IIHY-G3P(*) and as an isolated protein fragment. The refolding of domain N2 is slower and involves two reactions with time constants of seven seconds and 42 seconds. These folding reactions of the individual domains are followed by a very slow, spectroscopically silent docking process, which shows a time constant of 6200 seconds. This reaction was detected by a kinetic unfolding assay for native molecules. Before docking, N1 and N2 unfold fast and independently, after docking they unfold slowly in a correlated fashion. A high energy barrier is thus created by domain docking, which protects G3P kinetically against unfolding. The slow domain docking is possibly important for the infection of E.coli by the phage. Upon binding to the F pilus, the N2 domain separates from N1 and the binding site for TolA on domain N1 is exposed. Since domain reassembly is so slow, this binding site remains accessible until pilus retraction has brought N1 close to TolA on the bacterial surface.  相似文献   

19.
Oxidoreductases belonging to the protein disulfide isomerase (PDI) family promote proper disulfide bond formation in substrate proteins in the endoplasmic reticulum. In plants and metazoans, new family members continue to be identified and assigned to various functional niches. PDI-like proteins typically contain tandem thioredoxin-fold domains. The limited information available suggested that the relative orientations of these domains may be quite uniform across the family, and structural models based on this assumption are appearing. However, the X-ray crystal structure of the yeast PDI family protein Mpd1p, described here, demonstrates the radically different domain orientations and surface properties achievable with multiple copies of the thioredoxin fold. A comparison of Mpd1p with yeast Pdi1p expands our perspective on the contexts in which redox-active motifs are presented in the PDI family.  相似文献   

20.
Enhancing multiple disulfide bonded protein folding in a cell-free system   总被引:6,自引:0,他引:6  
A recombinant plasminogen activator (PA) protein with nine disulfide bonds was expressed in our cell-free protein synthesis system. Due to the unstable and reducing environment in the initial E. coli-based cell-free system, disulfide bonds could not be formed efficiently. By treating the cell extract with iodoacetamide and utilizing a mixture of oxidized and reduced glutathione, a stabilized redox potential was optimized. Addition of DsbC, replacing polyethylene glycol with spermidine and putrescine to create a more natural environment, adding Skp, an E. coli periplasmic chaperone, and expressing PA at 30 degrees C increased the solubility of the protein product as well as the yield of active PA. Taken together, the modifications enabled the production of more than 60 microg/mL of bioactive PA in a simple 3-h batch reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号