首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythrocyte aging in neurodegenerative disorders.   总被引:1,自引:0,他引:1  
In the present paper, we have reviewed the principal studies on red cell membrane abnormalities associated with neurodegenerative disorders. In the literature, two lines of investigation may be recognized: one based on the hypothesis of the presence of an oxidative environment responsible for red cell oxidative damage in Alzheimer's disease (AD), Alzheimer's dementia type (DAT) and Parkinson' disease (PD); the other one based on the identification of structural and/or functional abnormalities in red cell membrane band 3 and/or in red cell membrane lipid composition in "neuroacanthocytosis". In AD, DAT and PD patients, an increased red cell membrane lipid peroxidation suggests an increase red cell oxidative damages and precocious red cell aging. In "neuroacanthocytosis", grouping chorea-acanthocytosis, Mcleod syndrome and abetalipoproteinemia, the red cells are characterized by thorn or spur-like protrusions, known as "acanthocytes". The presence of circulating acanthocytes, characterized by abnormalities in red cell band 3 structure and/or function, is associated with increase levels of anti-band 3 antibodies which are physiologically produced against aged red cells and are known to mediate red cell removal from the peripheral circulation by macrophages. We have reviewed the mechanism(s) of the loss of red cell membrane stability and of the precocious red cell aging in neurodegenerative disorders.  相似文献   

2.
3.
The composition of red blood cell membrane and plasma phospholipids has been analyzed in patients with hyperlipidemias. In red cells of patients with elevated levels of triacylglycerol-rich lipoproteins, phosphatidylcholine (PC) was raised and sphingomyelin (SM) reduced, resulting in a 20% increase of the membrane PC/SM ratio. In plasma phospholipids of these patients PC and SM levels were also higher and lower, respectively and the plasma PC/SM ratio was elevated by more than 50%. Close positive correlations between plasma and membrane phospholipids were obtained for PC, SM and the PC/SM ratio in normolipidemic and hyperlipidemic donors. Plasmalogen phosphatidylethanolamine (PE), a supposed endogenous protector against lipid oxidation, was reduced by about 20% in red cell membrane lipids in hyperlipidemic patients. Also plasmalogen-PE in plasma tended to be reduced in hyperlipidemic donors. Plasma HDL levels were positively related to the content of plasmalogen PE in the red cell membrane. In conclusion, there are closely related increases in PC/SM ratios in plasma and the red cell membrane in patients with elevated levels of triacylglycerol-rich lipoproteins. It is speculated that decreases in red cell membrane plasmalogen-PE in hyperlipidemic patients could be related to impaired antioxidant protection, possibly as a consequence of reductions in plasma HDL levels.  相似文献   

4.
We examined whether elevations in cAMP levels increase membrane chloride permeability in native CHO cells by measuring whole cell chloride currents and efflux of 125I and 36Cl. With 20 microM forskolin, no significant effect was seen on whole cell currents. However, 100 microM forskolin increased both whole cell chloride currents and the rate of 125I and 36Cl efflux. Forskolin-activated currents showed a linear current-voltage relationship in solutions with symmetrical chloride concentrations and reversal potential changed in the direction anticipated for a chloride-selective current when chloride was replaced with gluconate. These results indicate that native CHO cells exhibit cAMP-regulated chloride conductance pathways which become apparent only after large elevations in intracellular cAMP levels.  相似文献   

5.
The results presented here indicate that haemoglobin is an integral part of the red cell membrane. The haemoglobin content of the membrane is highly dependent on the Ca++ content of the membrane in health and disease. Changes in the red cell interior alter the whole organization of the membrane and are even reflected in the binding of immunoglobulins to the red cell surface. The preferential binding of Hb-s A2 and S to the membrane has been confirmed. This phenomenon cannot be explained by differences in the charge between these haemoglobins and Hb A.  相似文献   

6.
The capability of rabbit reticulocytes to synthesize red cell membrane proteins has been tested in vitro. Reticulocyte-rich blood from phenylhydrazine-treated rabbits was incubated in vitro in a complete amino acid medium containing ferrous salts, glucose, rabbit plasma and [3-H]leucine. Red cell ghost membranes were prepared by hypotonic lysis and leucine incorporation into hemoglobin and total membrane proteins determined. The pattern of incorporation into individual peptides was determined by polyacrylamide gel electrophoresis of labeled membranes on large (19 mm) gels which were then sliced into 1 mm sections; radioactivity was compared with densitometric tracings of Coomassie blue stained analytical (6 mm) gels. Incorporation of [3-H]leucine into both hemoglobin and membrane protein was linear over 1 h. Gel analysis of labeled membranes revealed that the amino acid was primarily incorporated into peptides with molecular weights of 90 000 or less; three peptides of molecular weights 90 000, 60 000 and 33 000 showed the highest specific activity. Synthesis of the four largest peptide species was negligible. Removable of ferrous salts inhibited synthesis of both globin and membrane protein equally (approx. 50%). However, puromycin and cycloheximide preferentially inhibited the synthesis of globin as compared to membrane proteins. Reticulocytes remain capable of synthesizing a number of membrane proteins; these results are consistent with studies of red cell membrane synthesis in anemic rabbits in vivo.  相似文献   

7.
The red cell membrane has long been the focus of extensive study. The macromolecules embedded within the membrane carry the blood group antigens and perform many functions including the vital task of gas exchange. Links between the intramembrane macromolecules and the underlying cytoskeleton stabilize the biconcave morphology of the red cell and allow deformation during microvascular transit. Much is now known about the proteins of the red cell membrane and how they are organised. In many cases we have an understanding of which proteins are expressed, the number of each protein per cell, their oligomeric state(s), and how they are collected in large multi-protein complexes. However, our typical view of these structures is as cartoon shapes in schematic figures. In this study we have combined knowledge of the red cell membrane with a wealth of protein structure data from crystallography, NMR, and homology modelling to generate the first, tentative models of the complexes which link the membrane to the cytoskeleton. Measurement of the size of these complexes and comparison with known cytoskeletal distance parameters suggests the idea of interaction between the membrane complexes, which may have profound implications for understanding red cell function and deformation.  相似文献   

8.
Membrane potential and human erythrocyte shape.   总被引:1,自引:0,他引:1  
Altered external pH transforms human erythrocytes from discocytes to stomatocytes (low pH) or echinocytes (high pH). The process is fast and reversible at room temperature, so it seems to involve shifts in weak inter- or intramolecular bonds. This shape change has been reported to depend on changes in membrane potential, but control experiments excluding roles for other simultaneously varying cell properties (cell pH, cell water, and cell chloride concentration) were not reported. The present study examined the effect of independent variation of membrane potential on red cell shape. Red cells were equilibrated in a set of solutions with graduated chloride concentrations, producing in them a wide range of membrane potentials at normal cell pH and cell water. By using assays that were rapid and accurate, cell pH, cell water, cell chloride, and membrane potential were measured in each sample. Cells remained discoid over the entire range of membrane potentials examined (-45 to +45 mV). It was concluded that membrane potential has no independent effect on red cell shape and does not mediate the membrane curvature changes known to occur in red cells equilibrated at altered pH.  相似文献   

9.
An unusual combination of membrane properties allows the red cell to undergo extensive deformation without cell fragmentation, enabling it to effectively perform its function of oxygen delivery during its long life span in the circulation. These material properties are the consequence of a composite structure in which a plasma membrane envelope made up of amphiphilic surfactant molecules is anchored to a network of skeletal proteins through tethering sites (transmembrane proteins) in the bilayer. Explosive growth in our understanding of the primary structure of the various red cell membrane proteins, definition of specific mutations in various red phenotypes, and detailed biophysical characterization of membrane properties of normal and mutant red cells has enabled development of models of molecular and structural basis for red cell properties.  相似文献   

10.
With the advent of proteomic techniques the number of known post-translational modifications (PTMs) affecting red cell membrane proteins is rapidly growing but the understanding of their role under physiological and pathological conditions is incompletely established. The wide range of hereditary diseases affecting different red cell membrane functions and the membrane modifications induced by malaria parasite intracellular growth represent a unique opportunity to study PTMs in response to variable cellular stresses. In the present review, some of the major areas of interest in red cell membrane research have been considered as modifications of erythrocyte deformability and maintenance of the surface area, membrane transport alterations, and removal of diseased and senescent red cells. In all mentioned research areas the functional roles of PTMs are prevalently restricted to the phosphorylative changes of the more abundant membrane proteins. The insufficient information about the PTMs occurring in a large majority of the red membrane proteins and the general lack of mass spectrometry data evidence the need of new comprehensive, proteomic approaches to improve the understanding of the red cell membrane physiology.  相似文献   

11.
A novel fixative and permeabilization method is described which allows simultaneous flow cytometric detection of red blood cell membrane antigen and intracellular malaria parasites. To illustrate the method, red blood cells from patients with paroxysmal nocturnal hemoglobinuria were infected with Plasmodium falciparum and maintained in synchronous red blood cell culture. The infected red blood cells were immunolabeled with antibodies directed to the complement regulatory protein decay-accelerating factor (DAF) followed by subsequent fixations in paraformaldehyde and then glutaraldehyde in phosphate-buffered saline. Finally, DNA of the intraerythrocytic parasites was stained with propidium iodide. Using this technique, cellular morphology was well preserved, no cell aggregation was observed, and high-quality indirect immunofluorescence and parasite DNA staining were obtained with negligible nonspecific labelling. Simultaneous measurement of parasite DNA and red blood cell membrane determinants makes possible the investigation of alterations of red cell membrane proteins in association with development of intracellular malaria parasites.  相似文献   

12.
The hemolytic action of a homologous series of β-d-glucopyranosyl-1-alkylphosphates on human erythrocytes has been examined. The agent's affinity for the red cell membrane and the mean number of the agent's molecules which, upon interaction with an erythrocyte, make it undergo hemolysis have been measured. The contribution of the head group and that of a CH2 group of the surfactants to the free energy of the agents' binding to the cell membrane have been estimated. The effect of the surfactants on the red cell volume and the lytic concentrations of the agents have been measured. The contribution of a CH2 group to the free energy of the interaction of the amphiphiles embedded in the membrane bilayer with their environment has been evaluated and is proposed to be used as a measure of the membrane matrix stability.  相似文献   

13.
The reduction of nitroblue tetrazolium (NBT) with intact Red Blood Cells (RBCs) is biphasic with an initial rapid reduction followed by a slower second phase. This biphasic kinetics has been explained with the initial rapid phase attributed to antioxidants in the red cell which reduce membrane bound NBT and the slower phase associated with the reaction of NBT with membrane bound hemoglobin. This model has been confirmed by a utilization of a number of red cell modifications which either increase the red cell antioxidants (vitamin C and vitamin E) or damage the red cell membrane (cumene hydroperoxide and N-ethylmaleimide). The utilization of this assay for human blood samples was investigated by studying a series of 20 human subjects ranging between 34 and 87 years of age. It was possible to fit all of these samples with two adjustable parameters which reflect the red cell membrane antioxidant capacity (x) and the hemoglobin membrane interactions (m). The antioxidant capacity shows a significant (p < 002; R = -.67) decrease with age. This finding is consistent with a decrease in the level of antioxidants in aged subjects. In addition, the number of hemoglobin membrane sites are negatively correlated with the antioxidant capacity (p < .02; R = -.52) suggesting that the oxidative stress associated with reduced antioxidants results in increased hemoglobin-membrane interactions.  相似文献   

14.
Exposure of the inner surface of intact red cells or red cell ghosts to Ca2+ evokes unitary currents that can be measured in cell-attached and cell-free membrane patches. The currents are preferentially carried by K+ (PK/PNa 17) and show rectification. Increasing the Ca2+ concentration from 0 to 5 microM increases the probability of the open state of the channels parallel to the change of K+ permeability as observed in suspensions of red cell ghosts. Prolonged incubation of red cell ghosts in the absence of external K+ prevents the Ca2+ from increasing K+ permeability. Similarly, the probability to find Ca2+-activated unitary currents in membrane patches is drastically reduced. These observations suggest that the Ca2+-induced changes of K+ permeability observed in red cell suspensions are causally related to the appearance of the unitary K+ currents. Attempts to determine the number of K+ channels per cell were made by comparing fluxes measured in suspensions of red cells with the unitary currents in membrane patches as determined under comparable ionic conditions. At 100 mM KCl in the external medium, where no net movements of K+ occur, the time course of equilibration of 86Rb+ does not follow a single exponential. This indicates a heterogeneity of the response to Ca2+ of the cells in the population. The data are compatible with the assumption that 25% of the cells respond with Pk = 33.2 X 10(-14)cm3/s and 75% with Pk = 3.1 X 10(-14)cm3/s. At 100 mM external K+ the zero current permeability of a single channel is 6.1 X 10(-14)cm3/s (corresponding to a conductance of 22 pS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Diamond Blackfan Anemia (DBA) is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA.  相似文献   

16.
Mechanics of Rouleau formation.   总被引:3,自引:2,他引:1       下载免费PDF全文
The formation of rouleau of red blood cells is considered from the standpoint of adhesion theory. With the use of the elastic properties of the red blood cell membrane obtained from previous work, the strain energy of the red blood cell in rouleau formation has been computed. The surface energy of adhesion for the bonding of two red blood cells is then computed from the variation of this strain energy. Computed cell shapes agree well with experiments.  相似文献   

17.
Freeze-fracture electron microscopy of human red blood cells at pH 7.4 and 5.5 reveals the presence of membrane elevations (50-100 nm diameter). These are also observed after incubation of the erythrocytes with N-ethylmaleimide but not after incubation with p-chloromercuribenzene sulphonate. Neither of the sulphydryl-group reagents affects the distribution or size of intramembrane particles. The findings are discussed in the light of the effects of mercurials on erythrocyte membrane proteins.  相似文献   

18.
Membrane potential and the rate constants for anion self-exchange in dog, cat, and human red blood cells have been shown to vary with cell volume. For dog and cat red cells, the outward rate constants for SO4 and Cl increase while the inward rate constant for SO4 decreases as cells swell or shrink. These changes coincide with the membrane potential becoming more negative as a result of changes in cell volume. Human red cells exhibit a similar change in the rate constants for SO4 and Cl efflux in response to cell swelling, but shrunken cells exhibit a decreased rate constant for SO4 efflux and a more positive membrane potential. Hyperpolarization of shrunken dog and cat red cells is due to a volume-dependent rate constant for SO4 efflux and a more positive membrane potential. Hyperpolarization of shrunken dog and cat red cells is due to a volume-dependent increase in PNa. If this increase in PNa is prevented by ATP depletion or if the outward Na gradient is removed, the response to shrinking is identical to human red cells. These results suggest that the volume dependence of anion permeability may be secondary to changes in the anion equilibrium ratio which in red cells is reflected by the membrane potential. When the membrane potential and cell volume of human red cells were varied independently by a method involving pretreatment with nystatin, it was found that the rate of anion transport (for SO4 and Cl) does not vary with cell volume but rather with membrane potential (anion equilibrium ratio); that is, the rate constant for anion efflux is decreased and that for influx is increased as the membrane potential becomes more positive (internal anion concentration increases) while the opposite is true with membrane hyperpolarization (a fall in internal anion concentration).  相似文献   

19.
Na+ transport in the red cells of the dog is dependent on cell volume, a 20% change in cell volume leading to a 25-fold increase in apparent Na+ flux; the effect is dependent upon metabolic energy. We have found that swelling and shrinking dog red cells causes a shift in the 31P-NMR peak of 2,3-diphosphoglycerate, which is present in dog red cells at 5.5 mM. Control experiments indicate that the 2,3-diphosphoglycerate resonance peak shifts may not be attributed to: interaction with hemoglobin, changes in cell pH, ionic strength, diamagnetic susceptibility or small changes in the Mg2+/2,3-diphosphoglycerate ratio. Experiments with chlorpromazine and pentanol which alter red cell membrane area by a mechanism different from osmotic swelling suggest that 2,3-diphosphoglycerate interacts with a binding site in the cell that is dependent upon the physical condition of the dog red cell membrane.  相似文献   

20.
Despite the fact that the significance of red cell membrane acetylcholinesterase (AChE) is unknown, this enzyme of red cell assumes importance since many of its properties have been found to be similar to purified enzyme form of brain tissues. Our investigations on the effect of insulin-dependent diabetes mellitus on red cell AChE revealed that the activity of this enzyme is significantly decreased in diabetes. Insulin treatment restored the activity to the normal level. Solubilization of normal, diabetic and insulin treated diabetic red cell membranes with Triton X-100 (0.2% v/v) caused a general decline in AChE activity, however the per cent decline in activity of diabetic enzyme was lower as compared to normal and insulin treated conditions. From our results it is inferred that the decreased red cell AChE activity in diabetes is due to lesser number of active enzyme molecules and also due to altered membrane microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号