首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a homology model of the GABA(A) receptor, using the subunit combination of alpha1beta2gamma2, the most prevalent type in the mammalian brain. The model is produced in two parts: the membrane-embedded channel domain and the extracellular N-terminal domain. The pentameric transmembrane domain model is built by modeling each subunit by homology with the equivalent subunit of the heteropentameric acetylcholine receptor transmembrane domain. This segment is then joined with the extracellular domain built by homology with the acetylcholine binding protein. The all-atom model forms a wide extracellular vestibule that is connected to an oval chamber near the external surface of the membrane. A narrow, cylindrical transmembrane channel links the outer segment of the pore to a shallow intracellular vestibule. The physiological properties of the model so constructed are examined using electrostatic calculations and Brownian dynamics simulations. A deep energy well of approximately 80 kT accommodates three Cl(-) ions in the narrow transmembrane channel and seven Cl(-) ions in the external vestibule. Inward permeation takes place when one of the ions queued in the external vestibule enters the narrow segment and ejects the innermost ion. The model, when incorporated into Brownian dynamics, reproduces key experimental features, such as the single-channel current-voltage-concentration profiles. Finally, we simulate the gamma2 K289M epilepsy inducing mutation and examine Cl(-) ion permeation through the mutant receptor.  相似文献   

2.
Escherichia coli chemoreceptors are type I membrane receptors that have a periplasmic sensing domain, a cytosolic signaling domain, and two transmembrane segments. The aerotaxis receptor, Aer, is different in that both its sensing and signaling regions are proposed to be cytosolic. This receptor has a 38-residue hydrophobic segment that is thought to form a membrane anchor. Most transmembrane prediction programs predict a single transmembrane-spanning segment, but such a topology is inconsistent with recent studies indicating that there is direct communication between the membrane flanking PAS and HAMP domains. We studied the overall topology and membrane boundaries of the Aer membrane anchor by a cysteine-scanning approach. The proximity of 48 cognate cysteine replacements in Aer dimers was determined in vivo by measuring the rate and extent of disulfide cross-linking after adding the oxidant copper phenanthroline, both at room temperature and to decrease lateral diffusion in the membrane, at 4 degrees C. Membrane boundaries were identified in membrane vesicles using 5-iodoacetamidofluorescein and methoxy polyethylene glycol 5000 (mPEG). To map periplasmic residues, accessible cysteines were blocked in whole cells by pretreatment with 4-acetamido-4'-maleimidylstilbene-2, 2' disulfonic acid before the cells were lysed in the presence of mPEG. The data were consistent with two membrane-spanning segments, separated by a short periplasmic loop. Although the membrane anchor contains a central proline residue that reaches the periplasm, its position was permissive to several amino acid and peptide replacements.  相似文献   

3.
Satoh Y  Matsumoto G  Mori H  Ito K 《Biochemistry》2003,42(24):7434-7441
Integral membrane components SecY, SecE, and SecG of protein translocase form a complex in the Escherichia coli plasma membrane. To characterize subunit interactions of the SecYEG complex, a series of SecY variants having a single cysteine in its cytoplasmic (C1-C6) or periplasmic (P1-P5) domain were subjected to site-specific cross-linking experiments using bifunctional agents with thiol-amine reactivity. Experiments using inverted membrane vesicles revealed specific cross-linkings between a cysteine residue placed in the C2 or C3 domain of SecY and the cytosolic lysine (Lys26) near the first transmembrane segment of SecG. These SecY Cys residues also formed a disulfide bond with an engineered cytosolic cysteine at position 28 of SecG. Thus, the C2-C3 region of SecY is in the proximity of the N-terminal half of the SecG cytoplasmic loop. Experiments using spheroplasts revealed the physical proximity of P2 (SecY) and the C-terminal periplasmic region of SecG. In addition, mutations in secG were isolated as suppressors against a cold-sensitive mutation (secY104) affecting the TM4-C3 boundary of SecY. These results collectively suggest that a C2-TM3-P2-TM4-C3 region of SecY serves as an interface with SecG.  相似文献   

4.
The FMRF-amide-activated sodium channel (FaNaC), a member of the ENaC/Degenerin family, is a homotetramer, each subunit containing two transmembrane segments. We changed independently every residue of the first transmembrane segment (TM1) into a cysteine and tested each position's accessibility to the cysteine covalent reagents MTSET and MTSES. Eleven mutants were accessible to the cationic MTSET, showing that TM1 faces the ion translocation pathway. This was confirmed by the accessibility of cysteines present in the acid-sensing ion channels and other mutations introduced in FaNaC TM1. Modification of accessibilities for positions 69, 71 and 72 in the open state shows that the gating mechanism consists of the opening of a constriction close to the intracellular side. The anionic MTSES did not penetrate into the channel, indicating the presence of a charge selectivity filter in the outer vestibule. Furthermore, amiloride inhibition resulted in the channel occlusion in the middle of the pore. Summarizing, the ionic pore of FaNaC includes a large aqueous cavity, with a charge selectivity filter in the outer vestibule and the gate close to the interior.  相似文献   

5.
Multiple transmembrane (TM) segments line the pore of the cystic fibrosis transmembrane conductance regulator Cl(-) channel; however, the relative alignment of these TMs and their relative movements during channel gating are unknown. To gain three-dimensional structural information on the outer pore, we have used patch clamp recording to study the proximity of pairs of cysteine side chains introduced into TMs 6 and 11, using both disulfide cross-linking and Cd(2+) coordination. Following channel activation, disulfide bonds could apparently be formed between three cysteine pairs (of 15 studied): R334C/T1122C, R334C/G1127C, and T338C/S1118C. To examine the state dependence of cross-linking, we combined these cysteine mutations with a nucleotide-binding domain mutation (E1371Q) that stabilizes the channel open state. Investigation of the effects of the E1371Q mutation on disulfide bond formation and Cd(2+) coordination suggests that although R334C/T1122C and T338C/S1118C are closer together in the channel open state, R334C/G1127C are close together and can form disulfide bonds only when the channel is closed. These results provide important new information on the three-dimensional structure of the outer mouth of the cystic fibrosis transmembrane conductance regulator channel pore: TMs 6 and 11 are close enough together to form disulfide bonds in both open and closed channels. Moreover, the altered relative locations of residues in open and in closed channels that we infer allow us to propose that channel opening and closing may be associated with a relative translational movement of TMs 6 and 11, with TM6 moving "down" (toward the cytoplasm) during channel opening.  相似文献   

6.
Calcium signalling through store-operated calcium (SOC) entry is of crucial importance for T-cell activation and the adaptive immune response. This entry occurs via the prototypic Ca2+ release-activated Ca2+ (CRAC) channel. STIM1, a key molecular component of this process, is located in the membrane of the endoplasmic reticulum (ER) and is initially activated upon Ca2+ store depletion. This activation signal is transmitted to the plasma membrane via a direct physical interaction that takes place between STIM1 and the highly Ca2+-selective ion channel Orai1. The activation of STIM1 induces an extended cytosolic conformation. This, in turn, exposes the CAD/SOAR domain and leads to the formation of STIM1 oligomers. In this study, we focused on a small helical segment (STIM1 α3, aa 400–403), which is located within the CAD/SOAR domain. We determined this segment’s specific functional role in terms of STIM1 activation and Orai1 gating. The STIM1 α3 domain appears not essential for STIM1 to interact with Orai1. Instead, it represents a key domain that conveys STIM1 interaction into Orai1 channel gating. The results of cysteine crosslinking experiments revealed the close proximity of STIM1 α3 to a region within Orai1, which was located at the cytosolic extension of transmembrane helix 3, forming a STIM1-Orai1 gating interface (SOGI). We suggest that the interplay between STIM1 α3 and Orai1 TM3 allows STIM1 coupling to be transmitted into physiological CRAC channel activation.  相似文献   

7.
In recent years, cholesterol has been emerging as a major regulator of ion channel function. We have previously shown that cholesterol suppresses Kir2 channels, a subfamily of constitutively active strongly rectifying K+ channels. Furthermore, our earlier studies have shown that cholesterol sensitivity of Kir2 channels depends on a group of residues that form a belt-like structure around the cytosolic pore of the channel in proximity to the transmembrane domain. In this study, we focus on the contributions of different structural domains of Kir2 channels in the regulation of their cholesterol sensitivity. Focusing on the mildest mutation in the sensitivity belt, L222I, we show that the sensitivity of the channel to cholesterol can be restored by crosstalk between three distinct cytosolic regions: the C-terminal CD loop, the EF and GA loops of the C-terminus, and the βA sheet of the N-terminus. Thus, in addition to the importance of residues that affect the cytosolic G-loop gate in the sensitivity of Kir2 channels to cholesterol, our data suggest an important role to the interactions at the interface between the channel’s N- and C- termini that couple the intracellular domains of its four subunits during gating.  相似文献   

8.
The N -methyl-D-aspartate receptor (NMDAR) is a multimeric transmembrane protein composed of at least two subunits. One subunit, NR1, is derived from a single gene and can be subdivided into three regions: the N-terminal extracellular domain, the transmembrane regions, and the C-terminal intracellular domain. The N-terminal domain is responsible for Mg2+ metal ion binding and channel activity, while the transmembrane domains are important for ion channel formation. The intracellular C-terminal domain is involved in regulating receptor activity and subcellular localization. Our recent experiments indicated that the intracellular C-terminal domain, when expressed independently, localizes almost exclusively in the nucleus. An examination of the amino acid sequence reveals the presence of a putative nuclear localization sequence (NLS) in the C1 cassette of the NR1 intracellular C-terminus. Using an expression vector designed to test whether a putative NLS sequence is a valid, functional NLS, we have demonstrated that a bi-partite NLS does in fact exist within the NR1-1 C-terminus. Computer algorithms identified a putative helix-loop-helix motif that spanned the C0C1 cassettes of the C-terminus. These data suggest that the NR1 subunit may represent another member of a family of transmembrane proteins that undergo intramembrane proteolysis, releasing a cytosolic peptide that is actively translocated to the nucleus leading to alterations in gene regulation.  相似文献   

9.
Satoh Y  Mori H  Ito K 《Biochemistry》2003,42(24):7442-7447
Although the importance of interactions involving both the cytosolic and transmembrane regions of SecY and SecE has been documented, no information has been available for the physical contact sites of these translocase subunits in their cytosolic domains. We now carried out site-specific cross-linking experiments to identify SecY and SecE regions that are physically close. Cysteines introduced into SecY residue 244 in the fourth cytosolic domain (C4) as well as into residues 354-356 and 362 in the C5 domain could be cross-linked with natural or engineered residues at positions 79 and 81 in the central part of the cytosolic loop of SecE. These cross-linkages were abolished by the Gly240 mutation in the SecY C4 region as well as by prlG alterations in SecE transmembrane segment 3, known to compromise SecY-SecE interaction. We suggest that the cytosolic and intramembrane interactions bring these two subunits together, forming a functionally crucial SecYE interface involving the SecY C5 region and the conserved cytosolic segment of SecE.  相似文献   

10.
P2X receptors are ligand-gated cation channels that transition from closed to open states upon binding ATP. The crystal structure of the closed zebrafish P2X4.1 receptor directly reveals that the ion-conducting pathway is formed by three transmembrane domain 2 (TM2) α-helices, each being provided by the three subunits of the trimer. However, the transitions in TM2 that accompany channel opening are incompletely understood and remain unresolved. In this study, we quantified gated access to Cd2+ at substituted cysteines in TM2 of P2X2 receptors in the open and closed states. Our data for the closed state are consistent with the zebrafish P2X4.1 structure, with isoleucines and threonines (Ile-332 and Thr-336) positioned one helical turn apart lining the channel wall on approach to the gate. Our data for the open state reveal gated access to deeper parts of the pore (Thr-339, Val-343, Asp-349, and Leu-353), suggesting the closed channel gate is between Thr-336 and Thr-339. We also found unexpected interactions between native Cys-348 and D349C that result in tight Cd2+ binding deep within the intracellular vestibule in the open state. Interpreted with a P2X2 receptor structural model of the closed state, our data suggest that the channel gate opens near Thr-336/Thr-339 and is accompanied by movement of the pore-lining regions, which narrow toward the cytosolic end of TM2 in the open state. Such transitions would relieve the barrier to ion flow and render the intracellular vestibule less splayed during channel opening in the presence of ATP.  相似文献   

11.
Voltage-gated ion channels are transmembrane proteins that undergo complex conformational changes during their gating transitions. Both functional and structural data from K(+) channels suggest that extracellular and intracellular parts of the pore communicate with each other via a trajectory of interacting amino acids. No crystal structures are available for voltage-gated Na(+) channels, but functional data suggest a similar intramolecular communication involving the inner and outer vestibules. However, the mechanism of such communication is unknown. Here, we report that amino acid Ile-1575 in the middle of transmembrane segment 6 of domain IV (DIV-S6) in the adult rat skeletal muscle isoform of the voltage-gated sodium channel (rNa(V)1.4) may act as molecular switch allowing for interaction between outer and inner vestibules. Cysteine scanning mutagenesis of the internal part of DIV-S6 revealed that only mutations at site 1575 rescued the channel from a unique kinetic state ("ultra-slow inactivation," I(US)) produced by the mutation K1237E in the selectivity filter. A similar effect was seen with I1575A. Previously, we reported that conformational changes of both the internal and the external vestibule are involved in the generation of I(US). The fact that mutations at site 1575 modulate I(US) produced by K1237E strongly suggests an interaction between these sites. Our data confirm a previously published molecular model in which Ile-1575 of DIV-S6 is in close proximity to Lys-1237 of the selectivity filter. Furthermore, these functional data define the position of the selectivity filter relative to the adjacent DIV-S6 segment within the ionic permeation pathway.  相似文献   

12.
Acid-sensing ion channels (ASICs) are trimeric cation channels that undergo activation and desensitization in response to extracellular acidification. The underlying mechanism coupling proton binding in the extracellular region to pore gating is unknown. Here we probed the reactivity toward methanethiosulfonate (MTS) reagents of channels with cysteine-substituted residues in the outer vestibule of the pore of ASIC1a. We found that positively-charged MTS reagents trigger pore opening of G428C. Scanning mutagenesis of residues in the region preceding the second transmembrane spanning domain indicated that the MTSET-modified side chain of Cys at position 428 interacts with Tyr-424. This interaction was confirmed by double-mutant cycle analysis. Strikingly, Y424C-G428C monomers were associated by intersubunit disulfide bonds and were insensitive to MTSET. Despite the spatial constraints introduced by these intersubunit disulfide bonds in the outer vestibule of the pore, Y424C-G428C transitions between the resting, open, and desensitized states in response to extracellular acidification. This finding suggests that the opening of the ion conductive pathway involves coordinated rotation of the second transmembrane-spanning domains.  相似文献   

13.
Human P2X receptors are a family of seven ATP-gated ion channels that transport Na(+), K(+), and Ca(2+) across cell surface membranes. The P2X4 receptor is unique among family members in its sensitivity to the macrocyclic lactone, ivermectin, which allosterically modulates both ion conduction and channel gating. In this paper we show that removing the fixed negative charge of a single acidic amino acid (Glu(51)) in the lateral entrance to the transmembrane pore markedly attenuates the effect of ivermectin on Ca(2+) current and channel gating. Ca(2+) entry through P2X4 receptors is known to trigger downstream signaling pathways in microglia. Our experiments show that the lateral portals could present a novel target for drugs in the treatment of microglia-associated disease including neuropathic pain.  相似文献   

14.
Beck C  Wollmuth LP  Seeburg PH  Sakmann B  Kuner T 《Neuron》1999,22(3):559-570
In NMDA receptor channels, the M2 loop forms the narrow constriction and the cytoplasmic vestibule. The identity of an extracellular vestibule leading toward the constriction remained unresolved. Using the substituted cysteine accessibility method (SCAM), we identified channel-lining residues of the NR1 subunit in the region preceding M1 (preM1), the C-terminal part of M3 (M3C), and the N-terminal part of M4 (M4N). These residues are located on the extracellular side of the constriction and, with one exception, are exposed to the pore independently of channel activation, suggesting that the gate is at the constriction or further cytoplasmic to it. Permeation of Ca2+ ions was decreased by mutations in M3C and M4N, but not by mutations in preM1, suggesting a functionally distinct contribution of the segments to the extracellular vestibule of the NMDA receptor channel.  相似文献   

15.
C S Yang  J L Spudich 《Biochemistry》2001,40(47):14207-14214
The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an alpha-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2-TM2' region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2-TM2' cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer.  相似文献   

16.
Chloride channels belonging to the ClC family are ubiquitous and participate in a wide variety of physiological and pathophysiological processes. To define sequence segments in ClC channels that contribute to the formation of their ion conduction pathway, we employed a combination of site-directed mutagenesis, heterologous expression, patch clamp recordings, and chemical modification of the human muscle ClC isoform, hClC-1. We demonstrate that a highly conserved 8-amino acid motif (P3) located in the linker between transmembrane domains D2 and D3 contributes to the formation of a wide pore vestibule facing the cell interior. Similar to a previously defined pore region (P1 region), this segment functionally interacts with the corresponding segment of the contralateral subunit. The use of cysteine-specific reagents of different size revealed marked differences in the diameter of pore-forming regions implying that ClC channels exhibit a pore architecture quite similar to that of certain cation channels, in which a narrow constriction containing major structural determinants of ion selectivity is neighbored by wide vestibules on both sides of the membrane.  相似文献   

17.
While ~30% of the human genome encodes membrane proteins, only a handful of structures of membrane proteins have been resolved to high resolution. Here, we studied the structure of a member of the Cys-loop ligand gated ion channel protein superfamily of receptors, human type A γ2α1β2α1β2 gamma amino butyric acid receptor complex in a lipid bilayer environment. Studying the correlation between the structure and function of the gamma amino butyric acid receptor may enhance our understanding of the molecular basis of ion channel dysfunctions linked with epilepsy, ataxia, migraine, schizophrenia and other neurodegenerative diseases. The structure of human γ2α1β2α1β2 has been modeled based on the X-ray structure of the Caenorhabditis elegans glutamate-gated chloride channel via homology modeling. The template provided the first inhibitory channel structure for the Cys-loop superfamily of ligand-gated ion channels. The only available template structure before this glutamate-gated chloride channel was a cation selective channel which had very low sequence identity with gamma aminobutyric acid receptor. Here, our aim was to study the effect of structural corrections originating from modeling on a more reliable template structure. The homology model was analyzed for structural properties via a 100 ns molecular dynamics (MD) study. Due to the structural shifts and the removal of an open channel potentiator molecule, ivermectin, from the template structure, helical packing changes were observed in the transmembrane segment. Namely removal of ivermectin molecule caused a closure around the Leu 9 position along the ion channel. In terms of the structural shifts, there are three potential disulfide bridges between the M1 and M3 helices of the γ2 and 2 α1 subunits in the model. The effect of these disulfide bridges was investigated via monitoring the differences in root mean square fluctuations (RMSF) of individual amino acids and principal component analysis of the MD trajectory of the two homology models—one with the disulfide bridge and one with protonated Cys residues. In all subunit types, RMSF of the transmembrane domain helices are reduced in the presence of disulfide bridges. Additionally, loop A, loop F and loop C fluctuations were affected in the extracellular domain. In cross-correlation analysis of the trajectory, the two model structures displayed different coupling in between the M2–M3 linker region, protruding from the membrane, and the β1-β2/D loop and cys-loop regions in the extracellular domain. Correlations of the C loop, which collapses directly over the bound ligand molecule, were also affected by differences in the packing of transmembrane helices. Finally, more localized correlations were observed in the transmembrane helices when disulfide bridges were present in the model. The differences observed in this study suggest that dynamic coupling at the interface of extracellular and ion channel domains differs from the coupling introduced by disulfide bridges in the transmembrane region. We hope that this hypothesis will be tested experimentally in the near future.  相似文献   

18.
P2X receptors are ion channels opened by extracellular ATP. The seven subunits currently known are encoded by different genes. It is thought that each subunit has two transmembrane domains, a large extracellular loop, and intracellular N- and C-termini, a topology which is fundamentally different from that of other ligand-gated channels such as nicotinic acetylcholine or glutamate receptors. We used the substituted cysteine accessibility method to identify parts of the molecule that form the ionic pore of the P2X2 receptor. Amino acids preceding and throughout the second hydrophobic domain (316-354) were mutated individually to cysteine, and the DNAs were expressed in HEK293 cells. For three of the 38 residues (I328C, N333C, T336C), currents evoked by ATP were inhibited by extracellular application of methanethiosulfonates of either charge (ethyltrimethylammonium, ethylsulfonate) suggesting that they lie in the outer vestibule of the pore. For two further substitutions (L338C, D349C) only the smaller ethylamine derivative inhibited the current. L338C was accessible to cysteine modification whether or not the channel was opened by ATP, but D349C was inhibited only when ATP was concurrently applied. The results indicate that part of the pore of the P2X receptor is formed by the second hydrophobic domain, and that L338 and D349 are on either side of the channel 'gate'.  相似文献   

19.
Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) that bind neurotransmitters to open an intrinsic transmembrane ion channel pore. The recent crystal structure of a prokaryotic pLGIC from the cyanobacterium Gloeobacter violaceus (GLIC) revealed that it naturally lacks an N-terminal extracellular α helix and an intracellular domain that are typical of eukaryotic pLGICs. GLIC does not respond to neurotransmitters acting at eukaryotic pLGICs but is activated by protons. To determine whether the structural differences account for functional differences, we used a eukaryotic chimeric acetylcholine-glutamate pLGIC that was modified to carry deletions corresponding to the sequences missing in the prokaryotic homolog GLIC. Deletions made in the N-terminal extracellular α helix did not prevent the expression of receptor subunits and the appearance of receptor assemblies on the cell surface but abolished the capability of the receptor to bind α-bungarotoxin (a competitive antagonist) and to respond to the neurotransmitter. Other truncated chimeric receptors that lacked the intracellular domain did bind ligands; displayed robust acetylcholine-elicited responses; and shared with the full-length chimeric receptor similar anionic selectivity, effective open pore diameter, and unitary conductance. We suggest that the integrity of the N-terminal α helix is crucial for ligand accommodation because it stabilizes the intersubunit interfaces adjacent to the neurotransmitter-binding pocket(s). We also conclude that the intracellular domain of the chimeric acetylcholine-glutamate receptor does not modulate the ion channel conductance and is not involved in positioning of the pore-lining helices in the conformation necessary for coordinating a Cl- ion within the intracellular vestibule of the ion channel pore.  相似文献   

20.
Alanine-scanning mutagenesis of transmembrane segments IS6 and IIS6 of the rat brain Na(v)1.2 channel alpha subunit identified mutations N418A in IS6 and L975A in IIS6 as causing strong positive shifts in the voltage dependence of activation. In contrast, mutations V424A in IS6 and L983A in IIS6 caused strong negative shifts. Most IS6 mutations opposed inactivation from closed states, but most IIS6 mutations favored such inactivation. Mutations L421C and L983A near the intracellular ends of IS6 and IIS6, respectively, exhibited significant sustained Na(+) currents at the end of 30-ms depolarizations, indicating a role for these residues in Na(+) channel fast inactivation. These residues, in combination with residues at the intracellular end of IVS6, are well situated to form an inactivation gate receptor. Mutation I409A in IS6 reduced the affinity of the local anesthetic etidocaine for the inactivated state by 6-fold, and mutations I409A and N418A reduced use-dependent block by etidocaine. No IS6 or IIS6 mutations studied affected inactivated-state affinity or use-dependent block by the neuroprotective drug sipatrigine (compound 619C89). These results suggest that the local anesthetic receptor site is formed primarily by residues in segments IIIS6 and IVS6 with the contribution of a single amino acid in segment IS6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号