共查询到20条相似文献,搜索用时 0 毫秒
1.
Deqin Kong Yaqi Ding Jiangzheng Liu Rui Liu Jiaxin Zhang Qingbiao Zhou 《Free radical research》2019,53(6):680-693
Paraquat (PQ) is a widely used agro-chemical in agriculture and highly toxic to humans. Although the mechanism of PQ poisoning is not clear, it has been well documented that reactive oxygen species (ROS) generation and apoptosis play pivotal roles. Alternatively, chlorogenic acid (CA) is a biologically active dietary polyphenol, playing several therapeutic roles. However, it is not known whether CA has protective effect on PQ-induced apoptosis. Here, we investigated the effect of CA in preventing PQ-induced apoptosis and explored the underlying mechanisms. A549 cells were pretreated with 100 µM CA for 24?h and then exposed to 160 µM PQ for 24?h. We found that CA was effective in preventing PQ-induced apoptotic features, including the release of cytochrome c from the mitochondria to cytoplasm, the cleavages of caspase 3 and caspase 9, and the increases in levels of Bcl-2-associated X protein (Bax) and intracellular calcium ions. CA alleviated ROS production and prevented the reduction of antioxidant capacity in cells exposed to PQ by increasing NF-E2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2) and glutathione levels. In addition, CA also attenuated PQ-induced alterations of mitochondrial structure and function (such as the decreases in membrane potential and adenosine triphosphate level), and the impaired autophagic flux was improved by CA. Down-regulation of sirtuin 1 (Sirt1) by short hairpin RNA reversed the protective effects of CA. Thus, CA may be viewed as a potential drug to treat PQ-induced lung epithelial cell apoptosis and other disorders with similar pathologic mechanisms. 相似文献
2.
Wenlin Tai Shuhao Deng Wenjuan Wu ZhenKun Li Wen Lei Yin Wang Chanthasone Vongphouttha Tao Zhang Zhaoxing Dong 《Journal of cellular physiology》2020,235(2):1759-1768
Oxidative stress is a key regulator of idiopathic pulmonary fibrosis. Paraquat (PQ)-induced pulmonary fibrosis seriously endangers people's health. Rapamycin has been reported to alleviate PQ-induced pulmonary fibrosis, but its underlying mechanism is unclear. The nuclear factor E2-related factor 2 (Nrf2) plays an important regulatory role in the antioxidant therapy of PQ-induced pulmonary fibrosis. In this study, we tried to confirm that rapamycin attenuates PQ-induced pulmonary fibrosis by regulating Nrf2 pathway. In vivo, we proved that rapamycin could inhibit the degree of PQ-induced oxidant stress as well as enhanced the expression of Nrf2. In vitro, rapamycin decreased the upregulated effects of cell death and apoptosis, fibrosis-related factors expression and fibroblast-to-myofibroblast transformation by PQ treatment. In vivo, rapamycin treatment reduced fibrosis degree and the expression of fibrosis-related factors in lung tissues of rat treated PQ. Furthermore, we also found that Nrf2 knockdown reduced the inhibitory effect of rapamycin on PQ-induced pulmonary fibrosis, as well as decreased Nrf2 transfer from the cytoplasm into the nucleus. Our findings demonstrated that the protective effect of rapamycin is associated with the activation of the Nrf2 pathway in pulmonary fibrosis induced by PQ poisoning. 相似文献
3.
Activity of chloroplast-localized DNA endonuclease was observed in detached tobacco leaves that had been treated with paraquat
and light The DNA endonuclease was able to cleave the chloroplast, plasmid, and single-stranded DNA, as estimated on an agarose
gel. Activity was sensitive to two endonuclease inhibitors: aurintricarboxylic acid and ZnSO4. The time course for activity showed a peak 4 h after the stress treatment These results suggest that this enzyme plays a
specific physiological role during oxidative stress. Probable roles for this enzyme are also discussed. 相似文献
4.
Jianchang Chen 《Journal of cellular and molecular medicine》2014,18(6):1098-1103
Accumulating evidence has demonstrated that hydrogen sulphide (H2S) is involved in the pathogenesis of various respiratory diseases. In the present study, we established a rat model of passive smoking and investigated whether or not H2S has protective effects against pulmonary fibrosis induced by chronic cigarette smoke exposure. Rat lung tissues were stained with haematoxylin‐eosin and Masson's trichrome. The expression of type I collagen was detected by immunohistochemistry. Oxidative stress was evaluated by detecting serum levels of malondialdehyde, superoxide dismutase and glutathione peroxidase and measuring reactive oxygen species generation in lung tissue. Inflammation was assessed by measuring serum levels of inflammatory cytokines, including high‐sensitivity C‐reactive protein, tumour necrosis factor‐α, interleukin (IL)‐1β and IL‐6. The protein expression of Nrf2, NF‐κB and phosphorylated mitogen‐activated protein kinases (MAPKs) in the pulmonary tissue was determined by Western blotting. Our findings indicated that administration of NaHS (a donor of H2S) could protect against pulmonary fibrosis in the smoking rats. H2S was found to induce the nuclear accumulation of Nrf2 in lung tissue and consequently up‐regulate the expression of antioxidant genes HO‐1 and Trx‐1 in the smoking rats. Moreover, H2S could also reduce cigarette smoking‐induced inflammation by inhibiting the phosphorylation of ERK 1/2, JNK and p38 MAPKs and negatively regulating NF‐κB activation. In conclusion, our study suggests that H2S has protective effects against pulmonary fibrosis in the smoking rats by attenuating oxidative stress and inflammation. 相似文献
5.
《Bioscience, biotechnology, and biochemistry》2013,77(5):765-768
The protective effects of chlorogenic acid on paraquat-induced oxidative stress were examined in rats. The activities of erythrocytes and liver glutathione peroxidase, and of both liver catalase and glutathione reductase, which were increased by feeding paraquat, declined to the levels in the control rats by supplementing chlorogenic acid to the paraquat diet. The activity of superoxide dismutase was not changed by dietary paraquat or by supplementing chlorogenic acid to the paraquat diet. Paraquat in the diet markedly decreased the liver triacylglycerol and phospholipid concentrations, as well as the food intake and body weight gain, while chlorogenic acid protected against these decreases. These in vivo results and the in vitro superoxide anion scavenging activity of chlorogenic acid suggest that chlorogenic acid acted preventively against paraquat-induced oxidative stress. 相似文献
6.
Protective effect of alpha-tocopherol on oxidative stress in experimental pulmonary fibrosis in rats
The study was undertaken to investigate the influence of alpha-tocopherol (vitamin E) on malondialdehyde (MDA) and glutathione (GSH) levels and catalase (CAT) activity in lung of rats with bleomycin-induced pulmonary fibrosis (PF). Fourteen Wistar-albino rats were randomly divided into two groups of seven animals each. The first group was treated intra-tracheally with bleomycin hydrochloride (BM group); the second group was also instilled with BM but received injections of alpha-tocopherol twice a week (BM + E group). The third group was treated in the same manner with saline solution only, acting as controls (C). There were decreases in GSH level and CAT activity while an increase in MDA level in BM group was found compared to the control group (p < 0.05). Vitamin E had a regulator effect on these parameters. After administration of alpha-tocopherol, the increase in GSH level and CAT activity and the decrease in MDA level were seen in BM + E group compared to BM group (p < 0.05). Distinct histopathological changes were found in the BM group compared to the untreated rats. Less severe fibrotic lesions were also observed in the BM + E group. The results show that vitamin E is effective on the prevention of BM-induced PF, as indicated by differences in the lung levels of oxidants and antioxidants. 相似文献
7.
The metabolism of paraquat generates oxygen radicals. Paraquat has thus been suggested as a model compound to induce oxidative damage to DNA, lipids and proteins in different cells and tissues, although experimental data are inconsistent. In order to explore the possibilities for an animal model of oxidative DNA damage in vivo, rats were treated with 20 mg/kg paraquat or vehicle i.p. One and five days later we measured DNA oxidation in terms of 7-hydro-8-oxo-2′-deoxyguanosine (8-oxodG) in the liver and lung as well as the urinary excretion of 8-oxodG. No significant effects on the level of 8-oxodG in the liver, the lung or the urinary excretion, could be distinguished following paraquat treatment. We found, however, a significant correlation (r=0.69; p<0.0002) between the 8-oxodG level in the lung and the urinary excretion, but no significant correlation between the level in the liver and the urinary excretion or between the levels in the liver and the lung. During the experiment the rats were clearly affected by the paraquat as they were very lethargic compared to the controls. Accordingly, even at toxic doses, paraquat did not cause detectable oxidative damage to DNA. The data do not support the use of paraquat as a model compound in experiments investigating effects or prevention of oxidative damage to DNA. 相似文献
8.
Protective effects of a new metalloporphyrin on paraquat-induced oxidative stress and apoptosis in N27 cells 总被引:1,自引:0,他引:1
Chen P Li A Zhang M He M Chen Z Wu X Zhao C Wang S Liang L 《Acta biochimica et biophysica Sinica》2008,40(2):125-132
Paraquat (PQ, 1,1′-dimethyl-4,4′-bipyridinium),awidely-used herbicide, has been suggested as a potential etiologic factor for the development of Parkinson's disease. In recent years, many studies have focused on the mechanism(s) of PQ neurotoxicity. In this study, we examined the neuroprotective effect of manganese (Ⅲ) meso-tetrakis (N,N′-diethylimi- dazolium) porphyrin (MnTDM), a superoxide dismutase/ catalase mimetic, on PQ-induced oxidative stress and apoptosis in 1 RB3AN27 (N27) cells, a dopaminergic neuronal cell line. The results indicated that MnTDM significantly attenuated PQ-induced loss of cell viability, glutathione depletion, and reactive oxygen species production. MnTDM also ameliorated PQ-induced morphological nuclear changes of apoptosis and increased rates of apoptosis. In addition, our data provide direct evidence that MnTDM suppressed PQ- induced caspase-3 cleavage, possibly a key event of PQ neurotoxicity. These observations suggested that oxidative stress and apoptosis are implicated in PQ-induced neurotoxicity and this toxicity could be prevented by MnTDM. These findings also proposed a novel therapeutic approach for Parkinson's disease and other disorders associated with oxidative stress. 相似文献
9.
Antioxidants are potential therapeutic agents for reducing stress-induced organ damage. We investigated the effects of ascorbic acid and β-carotene on oxidative stress-induced cerebral, cerebellar, cardiac and hepatic damage using microscopy and biochemistry. Male Wistar albino rats were divided into five groups: untreated control, stressed, stressed + saline, stressed + ascorbic acid and stressed + β-carotene. The rats in the stressed groups were subjected to starvation, immobilization and cold. The histopathological damage scores for the stressed and stressed + saline groups were higher than those of the control group for all organs examined. The histopathological damage scores and mean tissue malondialdehyde levels for the groups treated with antioxidants were lower than those for the stressed and stressed + saline groups. Mean tissue superoxide dismutase activities for groups that received antioxidants were higher than those for the stressed + saline group for most organs evaluated. Ascorbic acid and β-carotene can reduce stress-induced organ damage by both inhibiting lipid oxidation and supporting the cellular antioxidant defense system. 相似文献
10.
Israr Ahmad Ashutosh Kumar Smriti Shukla Haushila Prasad Pandey 《Free radical research》2013,47(10):849-862
Oxidative stress plays a crucial role in the manifestations of maneb (MB) and paraquat (PQ)-induced toxicity including MB+PQ-induced Parkinson's disease (PD). Polymorphonuclear leukocytes (PMNs) actively participate in the oxidative stress-mediated inflammation and organ toxicity. The present study was undertaken to investigate the MB- and/or PQ-induced alterations in the indices of oxidative stress in rat PMNs. Animals were treated with or without MB and/or PQ in an exposure time dependent manner. In some sets of experiments, the animals were pre-treated with NOS inhibitors NG-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG) along with respective controls. A significant increase in myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide, iNOS expression and lipid peroxidation (LPO) was observed in PMNs of MB- and/or PQ-treated animals, while catalase and glutathione S-transferase (GST) activities were attenuated. L-NAME and AG significantly reduced the augmented nitrite content, iNOS expression and MPO activity to control level in MB and PQ exposed animals. Although the augmented LPO was also reduced significantly in L-NAME and AG treated rat PMNs, the level was still higher as compared with controls. Alterations induced in SOD and GST activities were not affected by NOS inhibitors. The results thus suggest that MB and/or PQ induce iNOS-mediated nitric oxide production, which in turn increases MPO activity and lipid peroxidation, thereby oxidative stress. 相似文献
11.
Folic acid (FA), is a group B vitamin, has high reactive oxygen radicals quenching ability, resulting in protection against oxidative damage in aerobic cell. Acetaminophen (N-acetyl-p-aminophenol, APAP) is a nonsteroidal anti-inflammatory drug, and can promote oxidative damage in liver and kidney tissues. The aim of this study was to investigate whether folic acid has protective effects on oxidative liver and kidney injury caused by experimental APAP toxication. Forty female Sprague dawley rats were divided into 5 groups; control, APAP, FA, APAP+FA, and APAP+N-acetylcysteine (NAC) groups. APAP toxication was induced by oral gavage (3 g/kg bodyweight). FA (20 mg/kg bodyweight) and NAC (150 mg/kg bodyweight) were given by oral gavage to the specified groups. Oxidant and antioxidant parameter were determined in liver and kidney tissues. In addition, the liver and kidney tissues were histological evaluated. When compared with APAP group, superoxide dismutase (SOD) and catalase activities and glutathione levels were statistically higher, malondialdehyde (MDA) level and myeloperoxidase activity (except liver tissue) were statistically lower in both APAP+FA and APAP+NAC. Liver and kidney MDA level and kidney SOD activity were significantly lower in APAP+NAC group compared with APAP+FA group. Co-administration of NAC with APAP was found to provide protection, but hepatic cords were defective in some places and some glomerular tubules also had dilatation. Necrotic areas was reduced in the liver and the glomerular structure was in good condition in the APAP+FA group. As a result, FA might have a protective effect against APAP-induced hepato-nephrotoxicity and oxidative stress in rat. 相似文献
12.
目的:观察α-亚麻酸(ALA)对糖尿病大鼠体内炎症介质和氧化应激的影响,探讨ALA在糖尿病防治中的作用。方法:雄性SD大鼠高脂饮食喂养4周后,腹腔注射链脲佐菌素(STZ)30 mg/kg建立2型糖尿病(T2DM)模型。将大鼠随机分为3组(n=10):正常对照组、糖尿病模型组和ALA治疗组(500μg/kg.d)。4周后测定大鼠血清中肿瘤坏死因子(TNF-α)、可溶性P-选择素(sP-selectin)、可溶性细胞间黏附分子(sICAM-1)、一氧化氮(NO)、丙二醛(MDA)的含量以及超氧化物岐化酶(SOD)和过氧化氢酶(CAT)的活性。结果:与正常对照组相比,糖尿病大鼠血清中炎症介质TNF-α、sP-selectin和sICAM-1的含量增加,血清NO含量下降而MDA升高,同时抗氧化酶SOD和CAT的活性降低;ALA治疗可显著降低糖尿病大鼠血清中TNF-α、sP-selectin和sICAM-1的含量(与STZ+vehicle组相比,P<0.01),增加血清NO水平并减少MDA含量,升高抗氧化酶SOD和CAT的活性(与STZ+vehicle组相比,均P<0.05)。结论:ALA可显著降低糖尿病大鼠血清炎症介质的生成,减轻氧化应激水平,具有抗炎和抗氧化作用。提示ALA对糖尿病及糖尿病并发症的发生发展可能具有一定的防治作用。 相似文献
13.
Ismail Cetin Ozturk Feral Ozturk Mehmet Gul Burhan Ates Asli Cetin 《Cell biochemistry and function》2009,27(5):309-315
This study was planned to investigate the protective effect of l (+)‐ascorbic acid (Vit C) on CCl4‐induced hepatotoxicity and oxidative stress in the liver of Wistar rats (Rattus Norvegicus, strain Wistar). Twenty‐four adult male Wistar rats were fed with standard rat chow diet for 10 days and randomly were divided into four groups of six each as follows: (1) control, (2) CCl4, (3) “CCl4 + Vit C”, (4) Vit C groups. CCl4 was applied to rats belonging to CCl4 and “CCl4 + Vit C” groups subcutaneously at 1 mg kg?1 dose CCl4 for 3 days. Vit C applied to “CCl4 + Vit C” and “Vit C” group rats intraperitoneally at 300 mg kg?1 dose for 3 days. All rats were sacrificed and livers were quickly removed on the fourth day of the experiment. MDA, total glutathione (T.GSH) levels and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH‐PX) activities were measured in the liver of all groups of rats and also serum alanine amino transferase (ALT) and aspartate amino transferase (AST) activities were detected to determine liver functions in all groups of rats. Histopathological changes were evaluated by light and transmission electron microscopes. In “CCl4 + Vit C” group, MDA level was significantly decreased (p < 0.05) and SOD, CAT, GSH‐PX activities were significantly increased (p < 0.005, 0.01, 0.05) respectively, T.GSH level was significantly increased (p < 0.005) and serum ALT and AST activities were significantly decreased (p < 0.01, 0.05), respectively, when compared with CCl4 group. These results show that Vit C has a highly protective effect on hepatotoxicity and oxidative stress caused by CCl4. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
14.
S. Gedik ME Erdemli M Gul B Yigitcan H Gozukara Bag Z Aksungur 《Biotechnic & histochemistry》2018,93(4):267-276
We investigated repair of acrylamide (AA) induced damage in intestines by administration of crocin. We used 40 male Wistar rats in four groups of 10 animals: control, AA, crocin, and AA + crocin groups. We investigated biochemical and histological changes to small and large intestine. AA ingestion decreased glutathione (GSH) levels and total antioxidant status (TAS) in the intestine compared to the control group, while superoxide dismutase (SOD) and catalase (CAT) activities, and total oxidant status (TOS) and malondialdehyde (MDA) levels were increased. Villi were shortened and villus degeneration was observed in ileum of the AA group. Degeneration of surface epithelium and Liberkühn crypts were observed in colon sections. GSH and TAS levels increased after administration of AA together with crocin, while SOD and CAT levels and TOS and MDA levels decreased; significant recovery of histological damage also was observed. We found that crocin exhibits protective effects on AA induced small and large intestine damage by inhibiting oxidative stress. 相似文献
15.
Pekmez H Kus I Colakoglu N Ogeturk M Ozyurt H Turkoglu AO Sarsilmaz M 《Cell biochemistry and function》2007,25(4):395-400
The aim of this study was to investigate the histological and biochemical changes in liver of rats exposed to cigarette smoke and effects of caffeic acid phenetyl ester (CAPE) on these changes. For this purpose, 21 male Wistar rats were divided into three groups. Animals in Group I were used as control. Rats in Group II were exposed to cigarette smoke and rats in Group III were exposed to cigarette smoke and injected daily with CAPE. At the end of the 60-days experimental period, all rats were killed by decapitation and blood samples were obtained. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin levels and hepatic superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px ), malondialdehyde (MDA) contents were determined. Following routine histological procedures, liver tissue specimens were examined under a light microscope. The levels of ALT, AST, total bilirubin, SOD, GSH-Px and MDA were significantly increased in rats exposed to cigarette smoke compared with those of the controls. Light microscopic examination of liver specimens from rats exposed to cigarette smoke revealed mononuclear cell infiltration and that some of the hepatocytes had a hyperchromatic nucleus and enlarged sinusoids. The rats which were treated with CAPE along with cigarettes had partially attenuated histological changes associated with cigarette exposure. In conclusion, the damage inflicted by cigarette in the rat liver can be partially prevented by CAPE administration. 相似文献
16.
Methylmercury (MeHg) is one of the ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. However, the mechanisms of MeHg-induced neuronal cell death are incompletely understood. Treatment of neuronal cells with MeHg (0-2?μM) for 0.5-12?h, or pretreated with LA (12.5-100?μM) for 0.5-6?h resulted in toxic effects of primary cultured neurons concentration- and time-dependently. For further experiments, 12.5, 25, and 50?μM of LA pretreatment for 3?h followed by 1?μM MeHg for 6?h were performed for the examination of the responses of neurons. Exposure of MeHg resulted in damages of neurons, which were shown by a loss of cell viability, and supported by high levels of lactate dehydrogenase (LDH) release, apoptosis, and morphological changes. In addition, neurons were sensitive to MeHg-mediated oxidative stress, a finding that is consistent with ROS over-production, leading to decrease Ca2+-ATPase activity and increase intracellular free calcium. Moreover, expressions of NMDA receptor subunits in neurons were down-regulated after MeHg exposure, and expression of NR2A mRNA and protein were much more sensitive to MeHg than those of NR1 and NR2B. On the contrary, pretreatment with LA presented a concentration-dependent prevention against MeHg-mediated cytotoxic effects of neurons. In conclusion, present results showed that oxidative stress and intracellular Ca2+?dyshomeostasis resulting from MeHg exposure contributed to neuronal injury. LA could attenuate MeHg-induced neuronal toxicity via its antioxidant properties in primary cultured neurons. 相似文献
17.
目的:研究硫酸软骨素时慢性酒精中毒氧化损伤的保护作用.方法:60只Wistar大鼠随机分成六个组:空白组给予蒸馏水,酒精模型组给予50%的酒精8 ml·kg-1·d-1灌胃,纳洛酮组在给予酒精三十分钟后腹腔注射纳洛酮0.08mgkg-1·d-1,硫酸软骨素低、中、高剂量组在酒精模型组的基础上分别给予硫酸软骨素50,100和150mg·kg-1·d-1.两周后酒精的剂量增加到12mg·kg-1d-1.在第八周末,分离大鼠脑组织,观察大鼠神经细胞.用生物方法测定大鼠脑组织中GSH-PX、SOD、MDA以及Ache的活性.结果:模型组大鼠大脑皮质和海马区神经细胞的数量明显减少并且排列紊乱;和酒精模型组相比较,硫酸软骨素中剂量组大脑皮质和海马区神经细胞排列较整齐,酒精+Chondroitin组脑组织中MDA的含量和Ache降低(P<0.01),GSH-PX的含量和SOD的活力均明显增加(P<0.01).结论:硫酸软骨素时慢性酒精中毒氧化损伤具有保护作用. 相似文献
18.
Yan Zhou Lili Zhou Shumei Mi Min Jiang Xiaolan Li 《Bioscience, biotechnology, and biochemistry》2016,80(5):962-971
Dietary polyphenols are thought to be beneficial for human health by acting as antioxidants. Chlorogenic acid (CGA) is abundant in plant-based foods as an ester of caffeic acid and quinic acid. In this study, we investigated the effects of CGA on mitochondrial protection. Our results demonstrated that pretreatment with CGA ameliorated the intestinal mitochondrial injury induced by H2O2; membrane potential was increased, mitochondrial swelling, levels of reactive oxygen species, contents of 8-hydroxy-2-deoxyguanosine, and cytochrome c released were decreased. The beneficial effects of CGA were accompanied by an increase in antioxidant and respiratory-chain complex I, IV, and V activities. In trinitrobenzene-sulfonic acid-induced colitic rats indicated that CGA supplementation improved mitochondria ultrastructure and decreased mitochondrial injury. Our results suggest a promising role for CGA as a mitochondria-targeted antioxidant in combating intestinal oxidative injury. Daily intake of diets containing CGA, such as coffee and honeysuckle, may be useful for prevention of intestinal diseases. 相似文献
19.
《Animal : an international journal of animal bioscience》2013,7(2):287-292
In this study, antioxidant capability and protective effect of probiotics on reproductive damage induced by diet oxidative stress were investigated. Thirty male Sprague-Dawley rats were randomly divided into three groups with 10 rats in each group. The control group consumed a normal standard diet (5% fat, w/w). The other two treatment groups were fed with a high-fat diet (20% fat, w/w), and a high-fat diet supplemented with 2% probiotics (w/w), respectively. At the end of the experimental period, that is, after 6 weeks, rats were killed. Activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), contents of nitric oxide (NO) free radical and malondialdehyde (MDA) in serum and sperm suspension were examined. Sperm parameters including sperm concentration, viability, motility and DNA integrity were analyzed. The results showed that high-fat diet could induce oxidative stress, shown as significant increases in lipid peroxidation, NO free radical, significant decrease in activities of SOD, GSH-Px, significant reduction in sperm concentration, viability and motility, and damage in sperm DNA (P < 0.05), compared with the control group. These alterations were significantly reversed in the probiotics-supplemented group and had no significant difference in antioxidant capability, lipid peroxidation and sperm parameters compared with the control group. The percentage of sperm with DNA damage was significantly lower than the high-fat diet group and still higher than the control group, which means that probiotics could attenuate sperm damage to some extent. The present results indicated that dietary probiotics had antioxidant activity and the protective effect against sperm damage induced by high-fat diet to some extent. 相似文献
20.
Nickel (Ni), a major environmental pollutant, is known for its wide toxic manifestations. In the present study caffeic acid (CA), one of the most commonly occurring phenolic acids in fruits, grains and dietary supplements, was evaluated for its protective effect against the Ni induced oxidative damage in liver. In this investigation, Ni (20 mg/kg body weight) was administered intraperitoneally for 20 days to induce toxicity. CA was administered orally (15, 30 and 60 mg/kg body weight) for 20 days with intraperitoneal administration of Ni. Ni induced liver damage was clearly shown by the increased activities of serum hepatic enzymes namely aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) and lactate dehydrogenase (LDH) along with increased elevation of lipid peroxidation indices (thiobarbituric reactive acid substances (TBARS) and lipid hydroperoxides). The toxic effect of Ni was also indicated by significantly decreased levels of enzymatic (superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx) and glutathione S-transferase (GST)) and non-enzymatic antioxidants (glutathione (GSH), vitamin C and vitamin E). CA administered at a dose of 60 mg/kg body weight significantly reversed the activities of hepatic marker enzymes to their near normal levels when compared with other two doses. In addition, CA significantly reduced lipid peroxidation and restored the levels of antioxidant defense in the liver. All these changes were supported by histological observations. The results indicate that CA may be beneficial in ameliorating the Ni induced oxidative damage in the liver of rats. 相似文献