首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis: an innate immune response to virus infection   总被引:1,自引:0,他引:1  
Viruses can induce apoptosis of infected cells either directly, to assist virus dissemination, or by inadvertently triggering cellular sensors that initiate cell death. Cellular checkpoints that can function as 'alarm bells' to transmit pro-apoptotic signals in response to virus infections include death receptors, protein kinase R, mitochondrial membrane potential, p53 and the endoplasmic reticulum.  相似文献   

2.
3.
Humans infected by the highly pathogenic H5N1 avian influenza viruses (HPAIV) present unusually high concentrations in serum of proinflammatory cytokines and chemokines, which are believed to contribute to the high pathogenicity of these viruses. The hemagglutinins (HAs) of avian influenza viruses preferentially bind to sialic acids attached through α2,3 linkages (SAα2,3) to the terminal galactose of carbohydrates on the host cell surface, while the HAs from human strains bind to α2,6-linked SA (SAα2,6). To evaluate the role of the viral receptor specificity in promoting innate immune responses in humans, we generated recombinant influenza viruses, one bearing the HA and neuraminidase (NA) genes from the A/Vietnam/1203/2004 H5N1 HPAIV in an influenza A/Puerto Rico/8/1934 (A/PR/8/34) backbone with specificity for SAα2,3 and the other a mutant virus (with Q226L and G228S in the HA) with preferential receptor specificity for SAα2,6. Viruses with preferential affinity for SAα2,3 induced higher levels of proinflammatory cytokines and interferon (IFN)-inducible genes in primary human dendritic cells (DCs) than viruses with SAα2,6 binding specificity, and these differences were independent of viral replication, as shown by infections with UV-inactivated viruses. Moreover, human primary macrophages and respiratory epithelial cells showed higher expression of proinflammatory genes after infection with the virus with SAα2,3 affinity than after infection with the virus with SAα2,6 affinity. These data indicate that binding to SAα2,3 by H5N1 HPAIV may be sensed by human cells differently than binding to SAα2,6, inducing an exacerbated innate proinflammatory response in infected individuals.  相似文献   

4.
The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role of the RIG-I-mediated innate immune response in RABV pathogenesis. After infection, LGP2 TG mice exhibited reduced expression of inflammatory/chemoattractive molecules, beta interferon (IFN-β), and IFN-stimulated genes in their NS compared to wild-type (WT) mice, demonstrating the inhibitory function of LGP2 in the innate immune response to RABV. Surprisingly, LGP2 TG mice showed more viral clearance in the brain and lower morbidity than WT mice, indicating that the host innate immune response, paradoxically, favors RABV neuroinvasiveness and morbidity. LGP2 TG mice exhibited similar neutralizing antibodies and microglia activation to those of WT mice but showed a reduction of infiltrating CD4(+) T cells and less disappearance of infiltrating CD8(+) T cells. This occurred concomitantly with reduced neural expression of the IFN-inducible protein B7-H1, an immunoevasive protein involved in the elimination of infiltrated CD8(+) T cells. Our study shows that the host innate immune response favors the infiltration of T cells and, at the same time, promotes CD8(+) T cell elimination. Thus, to a certain extent, RABV exploits the innate immune response to develop its immunoevasive strategy.  相似文献   

5.
Global Zika virus (ZIKV) outbreaks and their strong link to microcephaly have raised major public health concerns. ZIKV has been reported to affect the innate immune responses in neural stem/progenitor cells (NS/PCs). However, it is unclear how these immune factors affect neurogenesis. In this study, we used Asian-American lineage ZIKV strain PRVABC59 to infect primary human NS/PCs originally derived from fetal brains. We found that ZIKV overactivated key molecules in the innate immune pathways to impair neurogenesis in a cell stage-dependent manner. Inhibiting the overactivated innate immune responses ameliorated ZIKV-induced neurogenesis reduction. This study thus suggests that orchestrating the host innate immune responses in NS/PCs after ZIKV infection could be promising therapeutic approach to attenuate ZIKV-associated neuropathology.  相似文献   

6.
7.
8.
Degols G  Eldin P  Mechti N 《Biochimie》2007,89(6-7):831-835
The interferon (IFN) system is a major effector of the innate immunity that allows time for the subsequent establishment of an adaptive immune response against wide-range pathogens. The effectiveness of IFN to control initial infection requires the cooperation between several pathways induced in the target cells. Recent studies that highlight the implication of the 3'-5' exonuclease ISG20 (IFN Stimulated Gene product of 20 kDa) in the host's defenses against pathogens are summarised in this review.  相似文献   

9.
A host's defensive response to a pathogen is a phylogenetically ancient reaction that consists of a CNS-mediated series of autonomic, hormonal and behavioral responses that combine to combat infection. The absence of such defense results in greater morbidity and mortality and thus, these responses are essential for survival. The postnatal period represents a malleable phase in which the long-term behavior and physiology of the developing organism, including its immune responses, can be influenced. Postnatal challenge of the immune system by introduction of live replicating infections, or administration of bacterial and viral mimetics, can result in a multidomain alteration to the defenses of the adult host. Findings from our laboratory and others' indicate that the postnatal administration of lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (PolyI:C), which mimic bacterial and viral infections respectively, can influence the neuroimmune response (generation of fever and production of cytokines) to a second challenge to the immune system in adulthood. This long-lasting alteration in the innate immune response is associated with myriad other effects on the animal's physiology and appears to be primarily mediated by a sensitized hypothalamic-pituitary-adrenal axis. Thus, a transient immunological perturbation to a developing animal may program the organism for subsequent health complications as an adult. In this review we discuss some of the potential mechanisms for these phenomena.  相似文献   

10.
Following influenza infection, natural killer (NK) cells function as interim effectors by suppressing viral replication until CD8 T cells are activated, proliferate, and are mobilized within the respiratory tract. Thus, NK cells are an important first line of defense against influenza virus. Here, in a murine model of influenza, we show that virally-induced IL-15 facilitates the trafficking of NK cells into the lung airways. Blocking IL-15 delays NK cell entry to the site of infection and results in a disregulated control of early viral replication. By the same principle, viral control by NK cells can be therapeutically enhanced via intranasal administration of exogenous IL-15 in the early days post influenza infection. In addition to controlling early viral replication, this IL-15-induced mobilization of NK cells to the lung airways has important downstream consequences on adaptive responses. Primarily, depletion of responding NK1.1+ NK cells is associated with reduced immigration of influenza-specific CD8 T cells to the site of infection. Together this work suggests that local deposits of IL-15 in the lung airways regulate the coordinated innate and adaptive immune responses to influenza infection and may represent an important point of immune intervention.  相似文献   

11.
Mixed infection of Cucumber mosaic virus (CMV) and Turnip mosaic virus (TuMV) induced more severe symptoms on Nicotiana benthamiana than single infection. To dissect the relationships between spatial infection patterns and the 2b protein (2b) of CMV in single or mixed infections, the CMV vectors expressing enhanced green fluorescent or Discosoma sp. red fluorescent proteins (EGFP [EG] or DsRed2 [Ds], respectively were constructed from the same wild-type CMV-Y and used for inoculation onto N. benthamiana. CMV2-A1 vector (C2-A1 [A1]) has a functional 2b while CMV-H1 vector (C2-H1 [H1]) is 2b deficient. As we expected from the 2b function as an RNA silencing suppressor (RSS), in a single infection, A1Ds retained a high level of accumulation at initial infection sites and showed extensive fluorescence in upper, noninoculated leaves, whereas H1Ds disappeared rapidly at initial infection sites and could not spread efficiently in upper, noninoculated leaf tissues. In various mixed infections, we found two phenomena providing novel insights into the relationships among RSS, viral synergism, and interference. First, H1Ds could not spread efficiently from vasculature into nonvascular tissues with or without TuMV, suggesting that RNA silencing was not involved in CMV unloading from vasculature. These results indicated that 2b could promote CMV to unload from vasculature into nonvascular tissues, and that this 2b function might be independent of its RSS activity. Second, we detected spatial interference (local interference) between A1Ds and A1EG in mixed infection with TuMV, between A1Ds (or H1Ds) and TuMV, and between H1Ds and H1EG. This observation suggested that local interference between two viruses was established even in the synergism between CMV and TuMV and, again, RNA silencing did not seem to contribute greatly to this phenomenon.  相似文献   

12.
During the past 6 years, there have been substantial advances in our understanding of human immunodeficiency virus 1 and other viruses, such as hepatitis B virus and hepatitis C virus, that cause chronic infection. The use of mathematical modelling to interpret experimental results has made a significant contribution to this field. Mathematical modelling is also improving our understanding of T-cell dynamics and the quantitative events that underlie the immune response to pathogens.  相似文献   

13.
Recent years have seen a great advance in knowledge of how a host senses infection. Nucleic acids, as a common denominator to all pathogens, are at the centre of several of the sensing pathways, especially those involved with the recognition of viruses. In this review we discuss the current knowledge on how intracellular DNA is sensed by the mammalian host.  相似文献   

14.
Wen Y  Wang H  Wu H  Yang F  Tripp RA  Hogan RJ  Fu ZF 《Journal of virology》2011,85(4):1634-1644
Our previous studies indicated that recruitment and/or activation of dendritic cells (DCs) is important in enhancing the protective immune responses against rabies virus (RABV) (L. Zhao, H. Toriumi, H. Wang, Y. Kuang, X. Guo, K. Morimoto, and Z. F. Fu, J. Virol. 84:9642-9648). To address the importance of DC activation for RABV vaccine efficacy, the genes for several DC recruitment and/or activation molecules, e.g., granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage-derived chemokine (MDC), and macrophage inflammatory protein 1α (MIP-1α), were individually cloned into RABV. The ability of these recombinant viruses to activate DCs was determined in vitro and in vivo. Infection of mouse bone marrow-derived DCs with each of the recombinant viruses resulted in DC activation, as shown by increased surface expression of CD11c and CD86 as well as an increased level of alpha interferon (IFN-α) production compared to levels observed after infection with the parent virus. Intramuscular infection of mice with each of the viruses recruited and/or activated more DCs and B cells in the periphery than infection with the parent virus, leading to the production of higher levels of virus-neutralizing antibodies. Furthermore, a single immunization with recombinant RABV expressing GM-CSF or MDC protected significantly more mice against intracerebral challenge with virulent RABV than did immunization with the parental virus. Yet, these viruses did not show more virulence than the parent virus, since direct intracerebral inoculation with each virus at up to 1 × 10(7) fluorescent focus units each did not induce any overt clinic symptom, such as abnormal behavior, or any neurological signs. Together, these data indicate that recombinant RABVs expressing these molecules activate/recruit DCs and enhance protective immune responses.  相似文献   

15.
16.
Fine-tuning of the innate immune response by microRNAs   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are emerging as potent regulators of many biological processes, including cellular differentiation and disease. Recently, miRNA has been directly involved in innate immunity and transduction signalling by Toll-like receptors and the ensuing cytokine response. In this review, we present an overview of what is currently known of the involvement of miRNA and RNA interference components in the fine-tuning of innate immune responses.  相似文献   

17.
《Cytokine》2013,64(3):219-224
According to the existing paradigm, cellular recognition of viral infection is mediated by molecular patterns within the virus particle or produced during virus replication. However, there are various physical cellular changes indicative of infection that could also trigger innate antiviral responses. The type-I interferon response is rapidly engaged to limit viral infection and a number of studies have shown that the interferon response, or components of it, are induced by general perturbations to cellular processes. Virus entry requires membrane and cytoskeletal perturbation, and both membrane fusion or actin depolymerising agents alone are able to activate antiviral genes. Viruses cause cellular stress and change the cellular environment, and oxidative stress or endoplasmic reticulum stress will amplify antiviral signaling. Many of these responses converge on interferon regulatory factor 3, suggesting that it plays a crucial role in determining the degree to which the cell responds. This review highlights novel paradigms of viral recognition and speculates that viral infection is sensed as a danger signal.  相似文献   

18.
The antiviral innate immune response follows the detection of viral components by host pattern recognition receptors (PRRs). Two families of PRRs have emerged as key sensors of viral infection: Toll-like receptors (TLRs) and retinoic acid inducible gene-I like RNA helicases (RLHs). TLRs patrol the extracellular and endosomal compartments; signalling results in a type-1 interferon response and/or the production of pro-inflammatory cytokines. In contrast, RLHs survey the cytoplasm for the presence of viral double-stranded RNA. In the face of such host defence, viruses have developed strategies to evade TLR/RLH signalling. Such host-virus interactions provide the opportunity for manipulation of PRR signalling as a novel therapeutic approach.  相似文献   

19.
Iron metabolism and the innate immune response to infection   总被引:1,自引:0,他引:1  
Host antimicrobial mechanisms reduce iron availability to pathogens. Iron proteins influencing the innate immune response include hepcidin, lactoferrin, siderocalin, haptoglobin, hemopexin, Nramp1, ferroportin and the transferrin receptor. Numerous global health threats are influenced by iron status and provide examples of our growing understanding of the connections between infection and iron metabolism.  相似文献   

20.
To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of chronic lung disease with pathology that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after an infection with a common type of respiratory virus is cleared to only trace levels of noninfectious virus. Chronic inflammatory disease is generally thought to depend on an altered adaptive immune response. However, here we find that this type of disease arises independently of an adaptive immune response and is driven instead by interleukin-13 produced by macrophages that have been stimulated by CD1d-dependent T cell receptor-invariant natural killer T (NKT) cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a previously undescribed NKT cell-macrophage innate immune axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号