首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxorubicin (DOX) exerts toxic effects in several organs particularly kidney. The present study aimed to assess the protective effect of proanthocyanidins (PAs) against DOX‐induced nephrotoxicity in rats. A single dose of DOX (7.5 mg/kg, i.v.) significantly increased kidney weight, kidney/body weight ratio, serum urea, creatinine, tumor necrosis factor alpha levels, and kidney contents of malondialdehyde, nitric oxide, cyclooxygenase‐2, and caspase‐3 activity with significant reduction in final body weight, serum albumin, kidney contents of reduced glutathione (GSH), and superoxide dismutase activity as compared with control group. In contrast, pretreatment with PAs (200 mg/kg, p.o.) for 14 days before DOX and for 7 days after DOX ameliorated kidney function and oxidative stress parameters. Histopathological evidence confirmed the protective effects of PAs from the tissue damage induced by DOX. In conclusion, PAs have a multi‐nephroprotective effect that might be attributed to its antioxidant, anti‐inflammatory, and antiapoptoic activities.  相似文献   

2.
3.
Peroxisome proliferators are potent rodent liver carcinogens that act via a non-genotoxic mechanism. The mode of action of these agents in rodent liver includes increased cell proliferation, decreased apoptosis, secondary oxidative stress and other events; however, it is not well understood how peroxisome proliferators are triggering the plethora of the molecular signals leading to cancer. Epigenetic changes have been implicated in the mechanism of liver carcinogenesis by a number of environmental agents. Short-term treatment with peroxisome proliferators and other non-genotoxic carcinogens leads to global and locus-specific DNA hypomethylation in mouse liver, events that were suggested to correlate with a burst of cell proliferation. In the current study, we investigated the effects of long-term exposure to a model peroxisome proliferator WY-14,643 on DNA and histone methylation. Male SV129mice were fed a control or WY-14,643-containing (1000ppm) diet for one week, five weeks or five months. Treatment with WY-14,643 led to progressive global hypomethylation of liver DNA as determined by an HpaII-based cytosine extension assay with the maximum effect reaching over 200% at five months. Likewise, trimethylation of histone H4 lysine 20 and H3 lysine 9 was significantly decreased at all time points. The majority of cytosine methylation in mammals resides in repetitive DNA sequences. In view of this, we measured the effect of WY-14,643 on the methylation status of major and minor satellites, as well as in IAP, LINE1 and LINE2 elements in liver DNA. Exposure to WY-14,643 resulted in a gradual loss of cytosine methylation in major and minor satellites, IAP, LINE1 and LINE2 elements. The epigenetic changes correlated with the temporal effects of WY-14,643 on cell proliferation rates in liver, but no sustained effect on c-Myc promoter methylation was observed. Finally, WY-14,643 had no effect on DNA and histone methylation status in Pparalpha-null mice at any of the time points considered in this study. These data indicate the importance of epigenetic alterations in the mechanism of action of peroxisome proliferators and the key role of Pparalpha.  相似文献   

4.
Some of the pathological manifestations of cystic fibrosis are in accordance with an impaired expression and/or activity of PPARgamma. We hypothesized that PPARgamma expression is altered in tissues lacking the normal cystic fibrosis transmembrane regulator protein (CFTR). PPARgamma mRNA levels were measured in colonic mucosa, ileal mucosa, adipose tissue, lung, and liver from wild-type and cftr-/- mice by quantitative RT-PCR. PPARgamma expression was decreased twofold in CFTR-regulated tissues (colon, ileum, and lung) from cftr-/- mice compared to wild-type littermates. In contrast, no differences were found in fat and liver. Immunohistochemical analysis of PPARgamma in ileum and colon revealed a predominantly nuclear localization in wild-type mucosal epithelial cells while tissues from cftr-/- mice showed a more diffuse, lower intensity labeling. A significant decrease in PPARgamma expression was confirmed in nuclear extracts of colon mucosa by Western blot analysis. In addition, binding of the PPARgamma/RXR heterodimer to an oligonucletotide containing a peroxisome proliferator responsive element (PPRE) was also decreased in colonic mucosa extracts from cftr-/- mice. Treatment of cftr-/- mice with the PPARgamma ligand rosiglitazone restored both the nuclear localization and binding to DNA, but did not increase RNA levels. We conclude that PPARgamma expression in cftr-/- mice is downregulated at the RNA and protein levels and its function diminished. These changes may be related to the loss of function of CFTR and may be relevant to the pathogenesis of metabolic abnormalities associated with cystic fibrosis in humans.  相似文献   

5.
We examined the effect of pioglitazone, a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist of the thiazolidinedione class, on dopaminergic nerve cell death and glial activation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. The acute intoxication of C57BL/6 mice with MPTP led to nigrostriatal injury, as determined by tyrosine hydroxylase (TH) immunocytochemistry, and HPLC detection of striatal dopamine and metabolites. Damage to the nigrostriatal dopamine system was accompanied by a transient activation of microglia, as determined by macrophage antigen-1 (Mac-1) and inducible nitric oxide synthase (iNOS) immunoreactivity, and a prolonged astrocytic response. Orally administered pioglitazone (approximately 20 mg/kg/day) attenuated the MPTP-induced glial activation and prevented the dopaminergic cell loss in the substantia nigra pars compacta (SNpc). In contrast, there was little reduction of MPTP-induced dopamine depletion, with no detectable effect on loss of TH immunoreactivity and glial response in the striatum of pioglitazone-treated animals. Low levels of PPARgamma expression were detected in the ventral mesencephalon and striatum, and were unaffected by MPTP or pioglitazone treatment. Since pioglitazone affects primarily the SNpc in our model, different PPARgamma-independent mechanisms may regulate glial activation in the dopaminergic terminals compared with the dopaminergic cell bodies after acute MPTP intoxication.  相似文献   

6.
PPAR (peroxisome proliferator-activated receptor) pan agonists play a critical role in treating metabolic diseases, especially the Type-2 diabetes mellitus (T2DM). GlaxoSmithKline's sodelglitazar (GW677954) is one of the potent PPAR pan agonists, which is currently being investigated in Phase II clinical trials for the treatment of T2DM and its complications. The present study was aimed at investigation into the effect of sodelglitazar at the binding pockets of PPARs. The Schrodinger Suite program (2009) was used for the molecular docking, while the GROMACS program used for the molecular dynamics (MD) simulations. The results thus obtained showed that sodelglitazar being docked well in the active site of PPARs. It was revealed by the MD simulations that the structures of the receptors remained quite stable during the simulations and that the important AF-2 helix showed less flexibility after binding with sodelglitazar. Also, it was observed that sodelglitazar could periodically form hydrogen bonds with the AF-2 helix of PPARs to stabilize the AF-2 helix in an active conformation. Our findings have confirmed that GlaxoSmithKline's sodelglitazar can activate the PPARs, which is quite consistent with the previous biological studies.  相似文献   

7.
Peroxisome proliferator activated receptors (PPARs) are nuclear receptors that control important genes involved in lipid metabolism. Their role in nerve cells is uncertain, although anomalous myelination of the corpus callosum has been described in the PPARbeta-null mouse, and abnormalities of this tissue have been documented in fetal alcohol syndrome in humans. We report here that ethanol treatment of B12 oligodendrocyte-like cells induces a concentration- and time-dependent decrease in the mRNA and protein levels of PPARbeta, with no effect on PPARalpha or PPARgamma. The effect on PPARbeta is seen as an increase in mRNA degradation, as assessed by run-off assays, due to a significant decrease in PPARbeta mRNA half-life, with no observed changes in intracellular localization. Our results suggest a possible link between PPARbeta function and ethanol-induced abnormal myelination in oligodendrocytes.  相似文献   

8.
9.
10.
Renal toxicity is one of the most severe complications that can occur with cisplatin (CIS) administration in cancer patients. Montelukast (ML) renoprotective outcome contrary to CIS‐drawn nephrotoxicity remains obscure. Therefore, adult male Sprague–Dawley rats were orally given ML (10 and 20 mg/kg/day) 5 days before and after single CIS (5 mg/kg; i.p.) treatment. ML returned blood urea nitrogen, as well as serum creatinine and gamma glutamyl transferase that were elevated by CIS to normal level. The improved kidney function tests corroborated the attenuation of CIS renal injury at the microscopical level. It also reduced serum/renal nitric oxide and renal hemeoxygenase‐1. Meanwhile, ML hindered the raised levels of serum endothelin‐1, serum and renal tumor necrosis factor‐α, and monocyte chemoattractant protein‐1. These effects were associated by deceased caspase‐3 expression in kidney after ML treatment. In conclusion, ML guards against CIS‐induced nephrotoxicity via anti‐inflammatory and antiapoptotic properties.  相似文献   

11.
This study aimed to evaluate the protective effects of alpha lipoic acid (ALA) against doxorubicin (DOX)‐induced nephrotoxicity in rats. A single dose of DOX (7.5 mg/kg i.v.) induced nephrotoxicity evidenced by significant elevations in kidney weight, kidney/body weight ratio, serum urea, creatinine, tumor necrosis factor alpha, and renal contents of malondialdehyde, nitric oxide, cyclooxygenase‐2, and caspase‐3. Also, it causes significant reduction in final body weight, serum albumin, renal contents of reduced glutathione and superoxide dismutase activity. Histopathological changes in the kidney tissue confirmed the nephrotoxic effect. In contrast, pretreatment with ALA (50 mg/kg, orally) for 14 days before DOX and for 7 days after DOX administration mitigated renal toxicity evidenced by greater improvement in the examined oxidative stress, inflammation, and apoptosis parameters. In conclusion, ALA had promising protective effects against DOX‐induced nephrotoxicity that might be attributed to its antioxidant, anti‐inflammatory, and antiapoptoic activities.  相似文献   

12.
13.
In response to inflammatory cytokines, chondrocytes and synovial fibroblasts produce high amounts of prostaglandins (PG) which self-perpetuate locally the inflammatory reaction. Prostaglandins act primarily through membrane receptors coupled to G proteins but also bind to nuclear Peroxisome Proliferator-Activated Receptors (PPARs). Amongst fatty acids, the cyclopentenone metabolite of PGD2, 15-deoxy-Delta12,14PGJ2 (15d-PGJ2), was shown to be a potent ligand of the PPARgamma isotype prone to inhibit the production of inflammatory mediators. As the stimulated synthesis of PGE2 originates from the preferential coupling of inducible enzymes, cyclooxygenase-2 (COX-2) and membrane PGE synthase-1 (mPGES-1), we investigated the potency of 15d-PGJ2 to regulate prostaglandins synthesis in rat chondrocytes stimulated with interleukin-1beta (IL-1beta). We demonstrated that 15d-PGJ2, but not the high-affinity PPARgamma ligand rosiglitazone, decreased almost completely PGE2 synthesis and mPGES-1 expression. The inhibitory potency of 15d-PGJ2 was unaffected by changes in PPARgamma expression and resulted from inhibition of NF-kappaB nuclear binding and IkappaBalpha sparing, secondary to reduced phosphorylation of IKKbeta. Consistently with 15d-PGJ2 being a putative endogenous regulator of the inflammatory reaction if synthesized in sufficient amounts, the present data confirm the variable PPARgamma-dependency of its effects in joint cells while underlining possible species and cell types specificities.  相似文献   

14.
Cerebral inflammatory events play an important part in the pathogenesis of Alzheimer's disease (AD). Agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear hormone receptor that mediates anti-inflammatory actions of non-steroidal anti-inflammatory drugs (NSAIDs) and thiazolidinediones, have been therefore proposed as a potential treatment of AD. Experimental evidence suggests that cortical noradrenaline (NA) depletion due to degeneration of the locus ceruleus (LC) - a pathological hallmark of AD - plays a permissive role in the development of inflammation in AD. To study a possible relationship between NA depletion and PPARgamma-mediated suppression of inflammation we investigated the influence of NA on PPARgamma expression in murine primary cortical astrocytes and neurons. Incubation of astrocytes and neurons with 100 micro m NA resulted in an increase of PPARgamma mRNA as well as PPARgamma protein levels in both cell types. These effects were blocked by the beta-adrenergic antagonist propranolol but not by the alpha-adrenergic antagonist phentolamine, suggesting that they might be mediated by beta-adrenergic receptors. Our results indicate for the first time that PPARgamma expression can be modulated by the cAMP signalling pathway, and suggest that the anti-inflammatory effects of NA on brain cells may be partly mediated by increasing PPARgamma levels. Conversely, decreased NA due to LC cell death in AD may reduce endogenous PPARgamma expression and therefore potentiate neuroinflammatory processes.  相似文献   

15.
The endogenous neurotransmitter noradrenaline (NA) can protect neurons from the toxic consequences of various inflammatory stimuli, however the exact mechanisms of neuroprotection are not well known. In the current study, we examined neuroprotective effects of NA in primary cultures of rat cortical neurons. Exposure to oligomeric amyloid beta (Aβ) 1-42 peptide induced neuronal damage revealed by increased staining with fluorojade, and toxicity assessed by LDH release. Aβ-dependent neuronal death did not involve neuronal expression of the inducible nitric oxide synthase 2 (NOS2), since Aβ did not induce nitrite production from neurons, LDH release was not reduced by co-incubation with NOS2 inhibitors, and neurotoxicity was similar in wildtype and NOS2 deficient neurons. Co-incubation with NA partially reduced Aβ-induced neuronal LDH release, and completely abrogated the increase in fluorojade staining. Treatment of neurons with NA increased expression of γ-glutamylcysteine ligase, reduced levels of GSH peroxidase, and increased neuronal GSH levels. The neuroprotective effects of NA were partially blocked by co-treatment with an antagonist of peroxisome proliferator activated receptors (PPARs), and replicated by incubation with a selective PPARdelta (PPARδ) agonist. NA also increased expression and activation of PPARδ. Together these data demonstrate that NA can protect neurons from Aβ-induced damage, and suggest that its actions may involve activation of PPARδ and increases in GSH production.  相似文献   

16.
17.
Some aspects of peroxisome proliferator activated receptors (PPAR) involvement in regulation of stress-dependent biological processes leading to insulin resistance, lipid imbalance, hypertension and inflammation are reviewed. Analysis of literature data clearly shows the main role of PPAR in stress signal transduction following to metabolic disbalance development under prolonged stress conditions. The interplay of three PPAR isoforms functional activity with metabolic process disturbances during stress is under special emphasis. Taking into account experimental data described in literature we suggest that PPAR activation under acute stress is an adaptive response while stable PPAR hyperexpression under prolonged stress can cause insulin resistance, hypertension, and visceral obesity. The strategy of PPAR using as pharmacological targets in metabolic syndrome correction is under consideration.  相似文献   

18.
19.
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that modulate target gene expression in response to fatty acid ligands. Their regulation by post-translational modifications has been reported but is poorly understood. In the present study, we investigated whether ligand binding affects the turnover and ubiquitination of the PPARbeta subtype (also known as PPARdelta). Our data show that the ubiquitination and degradation of PPARbeta is not significantly influenced by the synthetic agonist GW501516 under conditions of moderate PPARbeta expression. By contrast, the overexpression of PPARbeta dramatically enhanced its degradation concomitant with its polyubiquitination and the formation of high molecular mass complexes containing multiple, presumably oligomerized PPARbeta molecules that lacked stoichiometical amounts of the obligatory PPARbeta dimerization partner, retinoid X receptor. The formation of these apparently aberrant complexes, as well as the ubiquitination and destabilization of PPARbeta, were strongly inhibited by GW501516. Our findings suggest that PPARbeta is subject to complex post-translational regulatory mechanisms that partly may serve to safeguard the cell against deregulated PPARbeta expression. Furthermore, our data have important implications regarding the widespread use of overexpression systems to evaluate the function and regulation of PPARs.  相似文献   

20.
Exposure to drugs often results in toxicity in the kidney which represents the major control system maintaining homeostasis of the body and thus is especially susceptible to xenobiotics. Nephrotoxicity is a life‐threatening side‐effect of nonsteroidal anti‐inflammatory drugs (NSAIDs). Diclofenac is one of the most frequently prescribed NSAIDs and have been reported to cause multiple organs damage. Curcumin (CUR) exhibits nephroprotective properties. Therefore, rats were divided into four groups; rats of groups 3 and 4 received diclofenac (100 mg/kg, i.m.), whereas rats of groups 2 and 4 received CUR (100 mg/kg, p.o.) for 3 days. Diclofenac revealed a significant increase in urea and creatinine levels and malondialdehyde concentration and marked reduction in catalase activity and reduced glutathione concentration. Histopathologically, diclofenac produced fatty changes and eosinophilic casts were detected in the renal tubules, those were attenuated by administration of CUR prior diclofenac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号