首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein A-V (apoA-V) plays a key role in the regulation of triglyceride (TG) metabolism. Given the very low concentration of apoA-V in plasma, we hypothesized that apoA-V may influence plasma TG levels by affecting the assembly and/or secretion of apoB-containing lipoproteins. When apoA-V was overexpressed in cultured Hep3B cells, neither the amount of apoB secreted nor the density distribution of apoB-containing lipoproteins was affected. Fluorescence microscopy and cell lysate immunoprecipitation studies revealed that apoA-V is not associated with apoB intracellularly, yet immunoprecipitation of apoA-V from the cell culture medium resulted in coprecipitation of apoB. These data suggest that the apoA-V association with apoB-containing lipoproteins is a postsecretory event. Confocal fluorescence microscopy revealed the presence of apoA-V in distinct cellular structures. Based on Nile Red staining, we identified these structures to be intracellular lipid droplets. These data suggest that apoA-V has a unique association with cellular lipids and, therefore, may be involved in the storage or mobilization of intracellular lipids.  相似文献   

2.
Structural lipids are mostly synthesized in the endoplasmic reticulum (ER), from which they are actively transported to the membranes of other organelles. Lipids can leave the ER through vesicular trafficking or non-vesicular lipid transfer and, curiously, both processes can be regulated either by the transported lipid cargos themselves or by different secondary lipid species. For most structural lipids, transport out of the ER membrane is a key regulatory component controlling their synthesis. Distribution of the lipids between the two leaflets of the ER bilayer or between the ER and other membranes is also critical for maintaining the unique membrane properties of each cellular organelle. How cells integrate these processes within the ER depends on fine spatial segregation of the molecular components and intricate metabolic channeling, both of which we are only beginning to understand. This review will summarize some of these complex processes and attempt to identify the organizing principles that start to emerge. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.  相似文献   

3.
Rose E Goodchild 《EMBO reports》2017,18(11):1905-1921
Endoplasmic reticulum (ER)‐localized enzymes synthesize the vast majority of cellular lipids. The ER therefore has a major influence on cellular lipid biomass and balances the production of different lipid categories, classes, and species. Signals from outside and inside the cell are directed to ER‐localized enzymes, and lipid enzyme activities are defined by the integration of internal, homeostatic, and external information. This allows ER‐localized lipid synthesis to provide the cell with membrane lipids for growth, proliferation, and differentiation‐based changes in morphology and structure, and to maintain membrane homeostasis across the cell. ER enzymes also respond to physiological signals to drive carbohydrates and nutritionally derived lipids into energy‐storing triglycerides. In this review, we highlight some key regulatory mechanisms that control ER‐localized enzyme activities in animal cells. We also discuss how they act in concert to maintain cellular lipid homeostasis, as well as how their dysregulation contributes to human disease.  相似文献   

4.
Alzheimer's disease (AD), the most common neurodegenerative disorder, which affects more than 35 million people worldwide, is characterized by a massive accumulation of tangles and amyloid plaques. Several risk factors linked to lipid homeostasis have been identified. Apolipoprotein E (ApoE), which also has a strong impact in coronary artery disease, is besides aging the most prominent risk factor in sporadic AD. High levels of lipoproteins and cholesterol increase the risk of AD and some cholesterol lowering drugs like statins seem to correlate with a reduced risk for dementia. Moreover, cholesterol increases amyloid β (Aβ) production, which is derived from amyloid precursor protein (APP) by proteolytic processing. Beside cholesterol, other lipids that strongly modulate APP processing could be identified and interestingly the APP cleavage products itself regulate lipid homeostasis resulting in complex regulatory feedback cycles. Here, we review the mechanistic link of cholesterol and sphingolipid homeostasis and APP processing and the consequence of this bidirectional link for and in AD. Although cholesterol is the best studied brain lipid in AD, many other lipids are involved in the Aβ-lipid regulatory system and some of these lipids exceed the cholesterol effect on Aβ production [1–5]. This involvement is bidirectional. On the one hand, lipids control APP processing and, on the other hand, APP processing controls the levels of several key lipids [6, 7]. Beside the physiological function of APP processing in lipid homeostasis, under pathological conditions like AD, these regulating (feedback-) cycles are dysfunctional. Additionally, mutual influence of lipids and APP processing raises the question if altered lipid homeostasis is the cause or consequence of AD.  相似文献   

5.
Biological membranes are heterogeneous assemblies of lipids, proteins, and cholesterol that are organized as asymmetric bimolecular leaflets of lipids with embedded proteins. Modulated by the concentration of cholesterol lipids and proteins may segregate into two or more liquid phases with different physical properties that can coexist in the same membrane. In this review, we summarize recent advances on how this situation can be recreated in a supported bilayer format and how this system has been used to demonstrate the induction of ordered lipid domains in lipid compositions that are typical for the inner leaflet by lipid compositions that are typical for the outer leaflet of mammalian plasma membranes. Proteins are shown to differentially target such induced inner leaflet domains.  相似文献   

6.
Lipids and lipid modifications in the regulation of membrane traffic   总被引:3,自引:0,他引:3  
Lipids play a multitude of roles in intracellular protein transport and membrane traffic. While a large body of data implicates phosphoinositides in these processes, much less is known about other glycerophospholipids such as phosphatidic acid, diacylglycerol, and phosphatidylserine. Growing evidence suggests that these lipids may also play an important role, either by mediating protein recruitment to membranes or by directly affecting membrane dynamics. Although membrane lipids are believed to be organized in microdomains, recent advances in cellular imaging methods paired with sophisticated reporters and proteomic analysis have led to the formulation of alternative ideas regarding the characteristics and putative functions of lipid microdomains and their associated proteins. In fact, the traditional view that membrane proteins may freely diffuse in a large 'sea of lipids' may need to be revised. Lastly, modifications of proteins by lipids or related derivatives have surprisingly complex roles on regulated intracellular transport of a wide range of molecules.  相似文献   

7.
Lipid transport proteins at membrane contact sites, where two organelles are closely apposed, play key roles in trafficking lipids between cellular compartments while distinct membrane compositions for each organelle are maintained. Understanding the mechanisms underlying non‐vesicular lipid trafficking requires characterization of the lipid transporters residing at contact sites. Here, we show that the mammalian proteins in the lipid transfer proteins anchored at a membrane contact site (LAM) family, called GRAMD1a‐c, transfer sterols with similar efficiency as the yeast orthologues, which have known roles in sterol transport. Moreover, we have determined the structure of a lipid transfer domain of the yeast LAM protein Ysp2p, both in its apo‐bound and sterol‐bound forms, at 2.0 Å resolution. It folds into a truncated version of the steroidogenic acute regulatory protein‐related lipid transfer (StART) domain, resembling a lidded cup in overall shape. Ergosterol binds within the cup, with its 3‐hydroxy group interacting with protein indirectly via a water network at the cup bottom. This ligand binding mode likely is conserved for the other LAM proteins and for StART domains transferring sterols.  相似文献   

8.
Association of stomatin with lipid bodies   总被引:10,自引:0,他引:10  
The oligomeric lipid raft-associated integral protein stomatin normally localizes to the plasma membrane and the late endosomal compartment. Similar to the caveolins, it is targeted to lipid bodies (LBs) on overexpression. Endogenous stomatin also associates with LBs to a small extent. Green fluorescent protein-tagged stomatin (StomGFP) and the dominant-negative caveolin-3 mutant DGV(cav3)HA occupy distinct domains on LB surfaces but eventually intermix. Studies of StomGFP deletion mutants reveal that the region for membrane association but not oligomerization and raft association is essential for LB targeting. Blocking protein synthesis leads to the redistribution of StomGFP from LBs to LysoTracker-positive vesicles indicating a connection with the late endosomal/lysosomal pathway. Live microscopy of StomGFP reveals multiple interactions between LBs and microtubule-associated vesicles possibly representing signaling events and/or the exchange of cargo. Proteomic analysis of isolated LBs identifies adipophilin and TIP47, various lipid-specific enzymes, cytoskeletal components, chaperones, Ras-related proteins, protein kinase D2, and other regulatory proteins. The association of the Rab proteins 1, 6, 7, 10, and 18 with LBs indicates various connections to other compartments. Our data suggest that LBs are not only involved in the storage of lipids but also participate actively in the cellular signaling network and the homeostasis of lipids.  相似文献   

9.
Lipid droplets are ubiquitous cellular organelles that allow cells to store large amounts of neutral lipids for membrane synthesis and energy supply in times of starvation. Compared to other cellular organelles, lipid droplets are structurally unique as they are made of a hydrophobic core of neutral lipids and are separated to the cytosol only by a surrounding phospholipid monolayer. This phospholipid monolayer consists of over a hundred different phospholipid molecular species of which phosphatidylcholine is the most abundant lipid class. However, lipid droplets lack some indispensable activities of the phosphatidylcholine biogenic pathways suggesting that they partially depend on other organelles for phosphatidylcholine synthesis.  相似文献   

10.
Lipids are central to the regulation and control of several cellular functions. They form many of the important structural features of cells, and are critical members of cellular signal transduction pathways. Cellular dysfunction is often caused by errors in lipid signaling; therefore, the proteins that interact with, synthesize or metabolize the lipids are potential therapeutic targets. Characterizing the contingent of cellular lipids and their abundance and how this is associated with disease will facilitate understanding how to intervene to correct diseases caused by dysfunctional lipid signaling. Since lipid-signaling networks involve several classes of proteins it is essential to determine the identity and role of these proteins in order to understand the networks. These proteins may be receptors, effectors, transporters or enzymes. We present tools, specifically, a lipid microarray platform, to uncover lipid-binding effector proteins that function in lipid signaling pathways. Lipid microarrays will allow researchers to obtain a comparable fingerprint of the proteins from a cell or tissue that bind to lipids, and also enable the identification of functionally important lipid-binding proteins. By applying a systematic approach to the quantification of lipid-protein interactions, lipid microarrays will provide an integrated knowledge base for the human lipidome. These tools have the potential to identify and validate targets to improve personalized medicine and health.  相似文献   

11.
Inositol lipids: receptor-stimulated hydrolysis and cellular lipid pools   总被引:3,自引:0,他引:3  
Our current knowledge of the process by which receptors stimulate the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) has its origin in the discovery by Hokin & Hokin (J. biol. Chem. 263, 967 (1953] that some pancreatic secretagogues not only elicit exocrine secretion but also stimulate the metabolism of membrane phospholipids. Despite the recent elucidation of many aspects of this widespread signalling system, there is still little information on the control of the supply of its substrate, PtdIns(4,5)P2. In particular, some studies have suggested that inositol-lipid-mediated signalling involves much or all of the inositol lipid complement of the stimulated cells, whereas other observations have equally clearly implicated the receptor-activated hydrolysis of an inositol phospholipid pool that comprises only a small fraction of the total cellular complement of these lipids. These studies, which have largely employed radiochemical analyses using single isotopes, are briefly reviewed. In addition, we report the first information obtained by a new procedure for analysing the metabolic characteristics of the inositol lipids that are broken down during stimulation. This technique employs cells that are doubly labelled in the inositol moiety of their lipids (to isotopic equilibrium with 14C and only briefly with 3H) to search for functional metabolic heterogeneity among the inositol lipids of stimulated cells. Using this method, we have found that the inositol phosphates liberated in stimulated cells during brief stimulation of V1a-vasopressin receptors or prostaglandin F2 alpha receptors come from phospholipid that has a turnover rate typical of the bulk of the cellular inositol lipids.  相似文献   

12.
Although cell membranes are packed with proteins mingling with lipids, remarkably little is known about how proteins interact with lipids to carry out their function. Novel analytical tools are revealing the astounding diversity of lipids in membranes. The issue is now to understand the cellular functions of this complexity. In this Perspective, we focus on the interface of integral transmembrane proteins and membrane lipids in eukaryotic cells. Clarifying how proteins and lipids interact with each other will be important for unraveling membrane protein structure and function. Progress toward this goal will be promoted by increasing overlap between different fields that have so far operated without much crosstalk.  相似文献   

13.
For a long time lipid peroxidation has only been considered a deleterious process leading to disruption of biomembranes and thus, to cellular dysfunction. However, when restricted to a certain cellular compartment and tightly regulated, lipid peroxidation may have beneficial effects. Early on during evolution of living organisms special lipid peroxidizing enzymes, called lipoxygenases, appeared and they have been conserved during phylogenesis of plants and animals. In fact, a diverse family of lipoxygenase isoforms has evolved starting from a putative ancient precursor. As with other enzymes, lipoxygenases are regulated on various levels of gene expression and there are endogenous antagonists controlling their cellular activity. Among the currently known mammalian lipoxygenase isoforms only 12/15-lipoxygenases are capable of directly oxygenating ester lipids even when they are bound to membranes and lipoproteins. Thus, these enzymes represent the pro-oxidative part in the cellular metabolism of complex hydroperoxy ester lipids. Its metabolic counterplayer, representing the antioxidative part, appears to be the phospholipid hydroperoxide glutathione peroxidase. This enzyme is unique among glutathione peroxidases because of its capability of reducing ester lipid hydroperoxides. Thus, 12/15-lipoxygenase and phospholipid hydroperoxide glutathione peroxidase constitute a pair of antagonizing enzymes in the metabolism of hydroperoxy ester lipids, and a balanced regulation of the two proteins appears to be of major cell physiological importance. This review is aimed at summarizing the recent developments in the enzymology and molecular biology of 12/15-lipoxygenase and phospholipid hydroperoxide glutathione peroxidase, with emphasis on cytokine-dependent regulation and their regulatory interplay.  相似文献   

14.
Adaptation of lipid membrane composition is an important component of archaeal homeostatic response. Historically, the number of cyclopentyl and cyclohexyl rings in the glycerol dibiphytanyl glycerol tetraether (GDGT) Archaeal lipids has been linked to variation in environmental temperature. However, recent work with GDGT-making archaea highlight the roles of other factors, such as pH or energy availability, in influencing the degree of GDGT cyclization. To better understand the role of multiple variables in a consistent experimental framework and organism, we cultivated the model Crenarchaeon Sulfolobus acidocaldarius DSM639 at different combinations of temperature, pH, oxygen flux, or agitation speed. We quantified responses in growth rate, biomass yield, and core lipid compositions, specifically the degree of core GDGT cyclization. The degree of GDGT cyclization correlated with growth rate under most conditions. The results suggest the degree of cyclization in archaeal lipids records a universal response to energy availability at the cellular level, both in thermoacidophiles, and in other recent findings in the mesoneutrophilic Thaumarchaea. Although we isolated the effects of key individual parameters, there remains a need for multi-factor experiments (e.g., pH + temperature + redox) in order to more robustly establish a framework to better understand homeostatic membrane responses.  相似文献   

15.
Lipids play an important part as risk or protective factors for Alzheimer's disease. This review summarizes the current findings in which lipids influence Alzheimer's disease and introduces the molecular mechanism how these lipids are linked to amyloid production. Besides the pathological impact of amyloid in Alzheimer's disease, amyloid has a physiological function in regulating lipid homeostasis in return. The understanding of the resulting regulatory cycles between amyloid precursor protein processing and lipids provides a platform for the development of new causal therapeutic approaches for Alzheimer's disease.  相似文献   

16.
Lipids play an important part as risk or protective factors for Alzheimer's disease. This review summarizes the current findings in which lipids influence Alzheimer's disease and introduces the molecular mechanism how these lipids are linked to amyloid production. Besides the pathological impact of amyloid in Alzheimer's disease, amyloid has a physiological function in regulating lipid homeostasis in return. The understanding of the resulting regulatory cycles between amyloid precursor protein processing and lipids provides a platform for the development of new causal therapeutic approaches for Alzheimer's disease.  相似文献   

17.
18.
Adequate energy storage is essential for sustaining healthy life.Lipid droplet(LD) is the subcellular organelle that stores energy in the form of neutral lipids and releases fatty acids under energy deficient conditions.Energy storage capacity of LDs is primarily dependent on the sizes of LDs.Enlargement and growth of LDs is controlled by two molecular pathways:neutral lipid synthesis and atypical LD fusion.Shrinkage of LDs is mediated by the degradation of neutral lipids under energy demanding conditions and is controlled by neutral cytosolic Upases and lysosomal acidic Upases.In this review,we summarize recent progress regarding the regulatory pathways and molecular mechanisms that control the sizes and the energy storage capacity of LDs.  相似文献   

19.
Using molecular dynamics simulations, we examine the behavior of lipids whose preferred curvature can be systematically varied. This curvature is imposed by controlling the headgroup size of a coarse-grained lipid model recently developed by us. To validate this approach, we examine self-assembly of each individual lipid type and observe the complete range of expected bilayer and micelle phases. We then examine binary systems consisting of lipids with positive and negative preferred curvature and find a definite sorting effect. Lipids with positive preferred curvature are found in greater proportions in outer monolayers with the opposite observed for lipids with negative preferred curvature. We also observe a similar, but slightly stronger effect for lipids in a developing spherical bud formed by adhesion to a colloid (e.g., a viral capsid). Importantly, the magnitude of this effect in both cases was large only for regions with strong mean curvature (radii of curvature <10 nm). Our results suggest that lipid shape must act in concert with other physico-chemical effects such as phase transitions or interactions with proteins to produce strong sorting in cellular pathways.  相似文献   

20.
Fertilization stimulates lipid peroxidation in the sea urchin egg   总被引:4,自引:0,他引:4  
Arachidonic acid is rapidly taken-up by Strongylocentrotus purpuratus eggs and eventually incorporated into cellular lipids. During the first few minutes following fertilization the arachidonic acid that has not been incorporated into other lipid forms is oxidized to a hydroxy-fatty acid. In vivo, the time of arachidonic acid conversion coincides with the transient period of increased intracellular free calcium after fertilization. In vitro, this lipid peroxidizing activity has been shown to be initiated by micromolar calcium. Taken together with the presence of Ca2+-stimulated lipase, these results suggest that calcium regulates both the release of polyunsaturated fatty acids from cellular lipids and their subsequent oxidation. The physiological function of lipid hydroxides or hydroperoxides in sea urchin fertilization is unknown. A possibility is that they may be important in regulating the many membrane permeability changes occurring within minutes after fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号