首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为实现微生物法高效率生产γ-氨基丁酸(GABA),从一株经多次诱变筛选的具有较高谷氨酸脱羧酶(GAD)活力植物乳杆菌GB 01-21全基因组DNA中PCR扩增获得GAD酶基因lpgad,构建重组质粒pET-28a-lpgad,在大肠杆菌E.coli BL21(DE3)中高效诱导表达。并采用Ni柱亲和层析纯化获得重组GAD,并对其酶学性质进行初步研究,为改良转化工艺提高GABA产量提供可靠理论依据。结果显示,重组大肠杆菌中GAD酶活显著提高,可达8.53 U/mg,是植物乳杆菌GB 01-21中GAD酶活的4.24倍。将该重组菌应用于转化L-谷氨酸生产GABA,5 L发酵罐水平转化24 h产量可达143.5 g/L,摩尔转化率为97.32%,是植物乳杆菌GB 01-21的2.19倍。纯化后酶学性质进行初步研究表明:其最适pH为4.8;最适温度为37℃;Ca2+、Mg2+对其有较强的激活作用,将上述实验结果用于转化条件的优化,最终5 L发酵罐上进行转化实验,批次添加底物L-谷氨酸共600 g,转化24 h,GABA累计浓度可达204.5 g/L,摩尔转化率为97.92%,与最初转化条件相比,GABA浓度提高了42.5%,为其工业化应用打下了良好的基础。  相似文献   

2.
3.
谷氨酸脱羧酶研究进展   总被引:2,自引:0,他引:2  
谷氨酸脱羧酶(glutamic acid decarboxylase,GAD,EC4.1.1.15)在生物体内广泛存在,其催化产物γ-氨基丁酸(γ-aminobutyric acid,GABA)是哺乳动物体内一种重要的抑制性神经递质。在对自身免疫性疾病以及糖尿病研究中,特别是1型糖尿病,GAD、GABA以及谷氨酸脱羧酶抗体(glutamic acid decarboxylase-antibody,GAD-Ab)等的水平作为病理分析、疾病诊断、免疫治疗的重要参数,历来备受研究者关注。本文就GAD及其催化产物GABA的研究进展进行了综述,为更好地研究自身免疫性疾病的发病机理,探索更加有效安全的治疗方法提供参考。  相似文献   

4.
A gene encoding glutamate decarboxylase A (GadA) from Lactobacillus brevis BH2 was expressed in a His-tagged form in Escherichia coli cells, and recombinant protein exists as a homodimer consisting of identical subunits of 53?kDa. GadA was absolutely dependent on the ammonium sulfate concentration for catalytic activity and secondary structure formation. GadA was immobilized on the metal affinity resin with an immobilization yield of 95.8%. The pH optima of the immobilized enzyme were identical with those of the free enzyme. However, the optimum temperature for immobilized enzyme was 5?°C higher than that for the free enzyme. The immobilized GadA retained its relative activity of 41% after 30 reuses of reaction within 30?days and exhibited a half-life of 19 cycles within 19?days. A packed-bed bioreactor with immobilized GadA showed a maximum yield of 97.8% GABA from 50?mM l-glutamate in a flow-through system under conditions of pH 4.0 and 55?°C.  相似文献   

5.
AIMS: The objective of this study was to investigate the effect of growing conditions on the glutamate-, arginine- and lysine-dependent acid resistance (AR) systems of Escherichia coli O157:H7. METHODS AND RESULTS: Seven E. coli O157:H7 strains were grown in five different media at neutral or acidic pH under aerobic or anaerobic conditions, and the survival rate after acid shocks (pH 2.0, 1 h, 37 degrees C) in the presence of glutamate, arginine and lysine was determined. Six strains induced the glutamate-dependent AR at stationary phase, and maximal survival were observed (> or =10%) when grown in pH 5- Luria-Bertani media with glucose (LBG) and in pH 4.5-anaerobic media. The arginine- and lysine-dependent systems were also present, but were only induced if cells had grown in LBG. For strain ATCC 43895, the minimum glutamate concentration that resulted in at least 10% survival rate was 10 micromol l(-1), but it required at least 10-fold more arginine and lysine. CONCLUSIONS: The lysine-dependent AR system could be as important as the arginine-mediated one, but the contribution of both systems to E. coli O157:H7 overall AR response might be minor compared with the glutamate-dependent system. SIGNIFICANCE AND IMPACT OF THE STUDY: Under typical environmental conditions, the glutamate-dependent AR system might be solely responsible for protecting cells against acidic pH.  相似文献   

6.
The microbial product citramalic acid (citramalate) serves as a five-carbon precursor for the chemical synthesis of methacrylic acid. This biochemical is synthesized in Escherichia coli directly by the condensation of pyruvate and acetyl-CoA via the enzyme citramalate synthase. The principal competing enzyme with citramalate synthase is citrate synthase, which mediates the condensation reaction of oxaloacetate and acetyl-CoA to form citrate and begin the tricarboxylic acid cycle. A deletion in the gltA gene coding citrate synthase prevents acetyl-CoA flux into the tricarboxylic acid cycle, and thus necessitates the addition of glutamate. In this study the E. coli citrate synthase was engineered to contain point mutations intended to reduce the enzyme's affinity for acetyl-CoA, but not eliminate its activity. Cell growth, enzyme activity and citramalate production were compared in several variants in shake flasks and controlled fermenters. Citrate synthase GltA[F383M] not only facilitated cell growth without the presence of glutamate, but also improved the citramalate production by 125% compared with the control strain containing the native citrate synthase in batch fermentation. An exponential feeding strategy was employed in a fed-batch process using MEC626/pZE12-cimA harboring the GltA[F383M] variant, which generated over 60 g/L citramalate with a yield of 0.53 g citramalate/g glucose in 132 hr. These results demonstrate protein engineering can be used as an effective tool to redirect carbon flux by reducing enzyme activity and improve the microbial production of traditional commodity chemicals.  相似文献   

7.
8.
We test, using site-directed mutagenesis, predictions based on the X-ray structure of N-acetyl-L-glutamate kinase (NAGK), the paradigm of the amino acid kinase protein family, about the roles of specific residues on substrate binding and catalysis. The mutations K8R and D162E decreased V([sustrate]= infinity ) 100-fold and 1000-fold, respectively, in agreement with the predictions that K8 catalyzes phosphoryl transfer and D162 organizes the catalytic groups. R66K and N158Q increased selectively K(m)(Asp) three to four orders of magnitude, in agreement with the binding of R66 and N158 to the C(alpha) substituents of NAG. Mutagenesis in parallel of aspartokinase III (AKIII phosphorylates aspartate instead of acetylglutamate), another important amino acid kinase family member of unknown 3-D structure, identified in AKIII two residues, K8 and D202, that appear to play roles similar to those of K8 and D162 of NAGK, and supports the involvement of E119 and R198, similarly to R66 and N158 of NAGK, in the binding of the amino acid substrate, apparently interacting, respectively, with the alpha-NH(3)(+) and alpha-COO(-) of aspartate. These results and an improved alignment of the NAGK and AKIII sequences have guided us into 3-D modelling of the amino acid kinase domain of AKIII using NAGK as template. The model has good stereochemistry and validation parameters. It provides insight into substrate binding and catalysis, agreeing with mutagenesis results with another aspartokinase that were not considered when building the model.AKIII is homodimeric and is inhibited by lysine. Lysine may bind to a regulatory region that is C-terminal to the amino acid kinase domain. We make a C-terminally truncated AKIII (AKIIIt) and show that the C-region is involved in intersubunit interactions, since AKIIIt is found to be monomeric. Further, it is inactive, as demanded if dimer formation is essential for activity. Models for AKIII architecture are proposed that account for these findings.  相似文献   

9.
L-谷氨酸脱羧酶是γ-氨基丁酸合成的关键限速酶,广泛的存在于脊椎动物神经细胞以及β-胰腺细胞,是胰岛素依赖型糖尿病(IDDM)病人以及僵硬综合症(SMS)病人血清的关键抗原。运用sephamryl S-200以及DEAEsepharose可以从猪脑中分离纯化出谷氨酸脱羧酶。纯化的GAD在变性条件下电泳,经考马斯亮蓝R250染色以及Western-Blot鉴定主要有两条带,分子量分别为67kD和44kD。根据L-谷氨酸脱羧酶能够分解谷氨酸产生γ-氨基丁酸和CO2的特性,通过测定产物γ-氨基丁酸推断酶活。以上实验结果表明从猪脑中分离纯化到的是具有生物学活性以及免疫原性的谷氨酸脱羧酶,可进一步改良为IDDM检测试剂盒,用于IDDM的预防和预测。  相似文献   

10.
Osteopontin (OPN) is a secreted calcium-binding phosphoprotein produced in a variety of normal and pathological contexts, including tissue mineralization and cancer. OPN contains a conserved RGD (arg-gly-asp) amino acid sequence that has been implicated in binding of OPN to cell surface integrins. To determine whether the RGD sequence in OPN is required for adhesive and chemotactic functions, we have introduced two site-directed mutations in the RGD site of the mouse OPN cDNA, in which the RGD sequence was either deleted or mutated to RGE (arg-gly-glu). In order to test the effect of these mutations on OPN function, we expressed control and mutated mouse OPN in E. coli as recombinant glutathione-S-transferase (GST)-OPN fusion proteins. Control mouse GST-OPN was functional in cell adhesion assays, supporting attachment and spreading of mouse (malignant PAP2 ras-transformed NIH 3T3, and, to a lesser extent, normal NIH 3T3 fibroblasts) and human (MDA-MB-435 breast cancer, and normal gingival fibroblast) cells. In contrast, neither of the RGD-mutated OPN proteins (“delRGD” or “RGE”) supported adhesion of any of the cell lines, even when used at high concentrations or for long assay times. GRGDS (gly-arg-gly-asp-ser) peptides inhibited cell adhesion to intact GST-OPN, as well as to fibronectin and vitronectin. In chemotaxis assays, GST-OPN promoted directed cell migration of both malignant (PAP2, MDA-MB-435) and normal (gingival fibroblast, and NIH 3T3) cells, while RGD-mutated OPN proteins did not. Together these results suggest that the conserved RGD sequence in OPN is required for the majority of the protein's cell attachment and migration-stimulating functions.  相似文献   

11.
A new vector for the expression of phosphofructokinase (pfk-1) was constructed with pEMBL, which allows reliable, inducible, high-expression, and facile mutagenesis of the gene. Two mutants in the effector site of the enzyme were produced by site-specific mutagenesis of residue Tyr-55 to assess the role of its side chain in binding an allosteric inhibitor, phosphoenolpyruvate (PEP), and an activator, guanosine 5'-diphosphate (GDP): Tyr-55----Phe-55 and Try-55----Gly-55. The dissociation constant of PEP from the T state is unaffected by the mutations. Mutation of Tyr-55----Phe-55 only slightly increases the dissociation constant of GDP from the R state, indicating a minimal involvement of the hydroxyl group in binding. A 5.5-fold increase in the dissociation constant of GDP on the mutation of Tyr-55----Gly-55 suggests a small hydrophobic interaction of the aromatic ring of the tyrosine residue with guanine of GDP.  相似文献   

12.
Barnett ME  Zolkiewski M 《Biochemistry》2002,41(37):11277-11283
ClpB is a member of a multichaperone system in Escherichia coli (with DnaK, DnaJ, and GrpE) that reactivates strongly aggregated proteins. The sequence of ClpB contains two ATP-binding domains, each containing Walker consensus motifs. The N- and C-terminal sequence regions of ClpB do not contain known functional motifs. In this study, we performed site-directed mutagenesis of selected charged residues within the Walker A motifs (Lys212 and Lys611) and the C-terminal region of ClpB (Asp797, Arg815, Arg819, and Glu826). We found that the mutations K212T, K611T, D797A, R815A, R819A, and E826A did not significantly affect the secondary structure of ClpB. The mutation of the N-terminal ATP-binding site (K212T), but not of the C-terminal ATP-binding site (K611T), and two mutations within the C-terminal domain (R815A and R819A) inhibited the self-association of ClpB in the absence of nucleotides. The defects in self-association of these mutants were also observed in the presence of ATP and ADP. The four mutants K212T, K611T, R815A, and R819A showed an inhibition of chaperone activity, which correlated with their low ATPase activity in the presence of casein. Our results indicate that positively charged amino acids that are located along the intersubunit interface (this includes Lys212 in the Walker A motif of the N-terminal ATP-binding domain as well as Arg815 and Arg819 in the C-terminal domain) participate in intersubunit salt bridges and stabilize the ClpB oligomer. Interestingly, we have identified a conserved residue within the C-terminal domain (Arg819) which does not participate directly in nucleotide binding but is essential for the chaperone activity of ClpB.  相似文献   

13.
Escherichia coli pH 2.5 acid phosphatase gene (appA) and three mutants were expressed in Pichia pastoris to assess the effect of strategic mutations or deletion on the enzyme (EcAP) biochemical properties. Mutants A131N/ V134N/D207N/S211N, C200N/D207N/S211N, and A131N/ V134N/C200N/D207N/S211N had four, two, and four additional potential N-glycosylation sites, respectively. Extracellular phytase and acid phosphatase activities were produced by these mutants and the intact enzyme r-AppA. The N-glycosylation level was higher in mutants A131N/V134N/D207N/S211N (48%) and A131N/V134N/ C200N/D207N/S211N (89%) than that in r-AppA (14%). Despite no enhancement of glycosylation, mutant C200N/ D207N/S211N was different from r-AppA in the following properties. First, it was more active at pH 3.5-5.5. Second, it retained more (P < 0.01) phytase activity than that of r-AppA. Third, its specific activity of phytase was 54% higher. Lastly, its apparent catalytic efficiency kcat/Km for either p-nitrophenyl phosphate (5.8 x 10(5) vs 2.0 x 10(5) min(-1) M(-1)) or sodium phytate (6.9 x 10(6) vs 1.1 x 10(6) min(-1) M(-1)) was improved by factors of 1.9- and 5.3-fold, respectively. Based on the recently published E. coli phytase crystal structure, substitution of C200N in mutant C200N/D207N/S211N seems to eliminate the disulfide bond between the G helix and the GH loop in the alpha-domain of the protein. This change may modulate the domain flexibility and thereby the catalytic efficiency and thermostability of the enzyme.  相似文献   

14.
富锌产γ-氨基丁酸乳酸菌的筛选及初步鉴定   总被引:1,自引:0,他引:1  
用含0.2%-0.25%Zn^2+的MRS培养基从发酵酸菜、酸奶中分离出6株具富锌能力细菌,经形态和生理生化特性鉴定,初步判断菌株为乳酸菌。采用纸层析检测MRSG培养基培养的6株菌上清液后,初步确定有4株能产γ-氨基丁酸。以此4菌株基因组为模板PCR扩增到540 bp的片段,经测序和序列分析,证明是谷氨酸脱羧酶基因高度保守区域,初步证明谷氨酸脱羧酶基因的存在。此4株菌发酵液经HPLC检测和分析后,证实2号菌株能转化谷氨酸钠生成GABA,产量为4.8 g/L,在应用方面具有很大的潜力。  相似文献   

15.
The adipocyte does not only serve as fuel storage but produces and secretes compounds with modulating effects on food intake and energy homeostasis. Although there is firm evidence for a centrally mediated regulation of adipocyte function via the autonomous nervous system, little is known about signaling between adipocytes. Amino acid neurotransmitters are candidates for such paracrine signaling. Here, we applied immunohistochemistry to detect components required for amino acid transmitter signaling in rat fat depots. In interscapular brown adipose tissue as well as in interscapular, mesenteric, perirenal, and epididymal white adipose tissues, we demonstrate robust immunosignals for the excitatory neurotransmitter glutamate, the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), and the GABA-synthesizing enzyme glutamate decarboxylase (GAD) isoforms GAD65 and GAD67. Moreover, all adipose tissues stained for the vesicular glutamate transporter VGLUT1 and the vesicular GABA transporter VGAT in addition to the vesicle marker synaptophysin. Electron microscopic immunocytochemistry showed that VGLUT1 and VGAT, but not VGLUT2 or VGLUT3, are localized in vesicular organelles in adipocytes. The receptors for glutamate (subunits GluR2/3 and NR1 but not mGluR2) and for GABA (GABA(A)Ralpha2) were present in the adipocytes. The presence of glutamate, GABA, their vesicular transporters, and their receptors indicates a paracrine signaling role for amino acids in adipose tissues.  相似文献   

16.
Abstract Val545 of the Escherichia coli penicillin-binding protein 3 is essential to the acyl transfer mechanism through which the active-site serine 307 is acylated by benzylpenicillin and cephalexin and to the mechanism through which the protein allows rapidly growing cells to divide.  相似文献   

17.
Site-directed mutagenesis of Pro327 in the lac permease of Escherichia coli   总被引:5,自引:0,他引:5  
By use of oligonucleotide-directed, site-specific mutagenesis, Pro327 in the lac permease of Escherichia coli has been replaced with Ala, Gly, or Leu. Permease with Ala at position 327 catalyzes lactose/H+ symport in a manner indistinguishable from wild-type permease. Permease with Gly at position 327, on the other hand, exhibits about one-tenth the activity of wild-type permease but catalyzes lactose accumulation to essentially the same steady-state level as wild-type permease. Finally, permease with Leu at position 327 is completely inactive. The results demonstrate that there is no relationship between permease activity and the helix-breaking (Pro and Gly) or helix-making (Ala and Leu) properties of the residue at position 327. It is suggested that it is primarily a chemical property of the side chain at position 327 (i.e., bulk, hydropathy, and/or ability to hydrogen bond) that is critical for activity and that neither cis/trans isomerization of Pro327 nor the presence of a kink at this position is important.  相似文献   

18.
The 12 histidine and four cysteine residues of the Fur repressor of Escherichia coli were changed, respectively, to leucine and serine by site-directed mutagenesis of the fur gene. The affects of these mutations were measured in vivo by ligation of the mutated genes to a wild-type fur promoter followed by measurement of the ability of these plasmids to regulate expression of a lacZ fusion in the aerobactin operon. In vitro affects were assayed by insertion of the mutated genes in the expression vector pMON2064 attended by isolation of the altered Fur proteins and appraisal of their capacity to bind to operator DNA. The results suggest that cysteine residues at positions 92 and 95 are important for the activity of the Fur protein.  相似文献   

19.
P D Roepe  H R Kaback 《Biochemistry》1989,28(14):6127-6132
By using oligonucleotide-directed, site-specific mutagenesis, each of the 14 Tyr residues in the lac permease of Escherichia coli was replaced with Phe, and the activity of each mutant was studied with respect to active transport, equilibrium exchange, and efflux. Ten of the mutations have no significant effect on permease activity. Of the four mutations that alter activity, replacement of Tyr26 or Tyr336 with Phe severely decreases all modes of translocation, and the binding affinity of the mutant permease for p-nitrophenyl alpha-D-galactopyranoside is markedly decreased (i.e., KD is increased). In addition, the Phe336 mutant permease is inserted into the membrane to a lesser extent than wild-type permease, as judged by immunoblot experiments. Permease containing Phe in place of Tyr236 catalyzes lactose exchange approximately 40% as well as wild-type permease but does not catalyze active transport or efflux. Finally, permease with Phe in place of Tyr382 catalyzes equilibrium exchange normally, but exhibits low rates of active transport and efflux without being uncoupled, thereby suggesting that replacement of Tyr382 with Phe alters a kinetic step involving translocation of the unloaded permease across the membrane.  相似文献   

20.
The animal fatty acid synthase is a multifunctional protein with a subunit molecular weight of 260,000. We recently reported the expression and characterization of the acyl carrier protein and thioesterase domains of the chicken liver fatty acid synthase in Escherichia coli. In order to gain insight into the mechanism of action of the thioesterase domain, we have replaced the putative active site serine 101 with alanine and cysteine and the conserved histidine 274 with alanine by site-directed mutagenesis. While both the Ser101----Ala and His274----Ala mutant proteins were inactive, the Ser101----Cys mutant enzyme (thiol-thioesterase) retained considerable activity, but the properties of the enzyme were changed from an active serine esterase to an active cysteine esterase, providing strong evidence for the role of Ser101 as the active site nucleophile. In order to further probe into the role of His274, a double mutant was constructed containing both the Ser101----Cys and the His274----Ala mutations. The double-mutant protein was inactive and exhibited diminished reactivity of the Cys-SH to iodoacetamide as compared to that of the Ser101----Cys-thioesterase, suggesting a role of His274 as a general base in withdrawing the proton from the Cys-SH in the thiol-thioesterase or Ser101 in the wild-type enzyme. Incubation of the recombinant thioesterases with [1-14C] palmitoyl-CoA resulted in the incorporation of [1-14C] palmitoyl into the enzyme only in the double mutant, suggesting that Cys-SH of the double mutant is reactive enough to form the palmitoyl-S-enzyme intermediate. This intermediate is not hydrolyzed because of the lack of His274, which is required for the attack of H2O on the acyl enzyme. These results suggest that the catalytic mechanism of the thioesterases may be similar to that of the serine proteases and lipases, which employ a serine-histidine-aspartic acid catalytic triad as part of their catalytic mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号