首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatic stellate cell (HSC) lipid droplets are specialized organelles for the storage of retinoid, accounting for 50-60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT) mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS) based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP) mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i) increased expression of typical markers of HSC activation; (ii) decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT); (iii) decreased triglyceride levels; (iv) increased expression of genes associated with lipid catabolism; and (v) an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1. CONCLUSION: Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be "primed" and ready for rapid response to acute liver injury.  相似文献   

2.
3.
4.
Hepatic stellate cells: unique characteristics in cell biology and phenotype   总被引:39,自引:0,他引:39  
Hepatic stellate cells (HSCs), a mesenchymal cell type in hepatic parenchyma, have unique features with respect to their cellular origin, morphology, and function. Normal, quiescent HSCs function as major vitamin A-storing cells containing over 80% of total vitamin A in the body to maintain vitamin A homeostasis. HSCs are located between parenchymal cell plates and sinusoidal endothelial cells, and extend well-developed, long processes surrounding sinusoids in vivo as pericytes. However, HSCs are known to be 'activated' or 'transdifferentiated' to myofibroblast-like phenotype lacking cytoplasmic lipid droplets and long processes in pathological conditions such as liver fibrosis and cirrhosis, as well as merely during cell culture after isolation. HSCs are the predominant cell type producing extracellular matrix (ECM) components as well as ECM degrading metalloproteases in hepatic parenchyma, indicating that they play a pivotal role in ECM remodeling in both normal and pathological conditions. Recent findings have suggested that HSCs have a neural crest origin from their gene expression pattern similar to neural cell type and/or smooth muscle cells and myofibroblasts. The morphology and function of HSCs are regulated by ECM components as well as by cytokines and growth factors in vivo and in vitro. Liver regeneration after partial hepatectomy might be an invaluable model to clarify the HSC function in elaborate organization of liver tissue by cell-cell and cell-ECM interaction and by growth factor and cytokine regulation.  相似文献   

5.
The activation of hepatic stellate cell (HSC) is a common pathway leading to hepatic fibrosis. However, the molecular mechanisms underlying HSC activation remain obscure. To elucidate the nature of the HSC activation, we investigated the expression of E-cadherin and its switch to N-cadherin during rat HSC activation, in vivo and in vitro. Immunohistochemical and immunocytochemical staining were performed to identify the expressions of E-cadherin, N-cadherin, and β-catenin in rat HSCs, in vivo and in vitro. Serial changes in the expressions of these adhesion molecules during the spontaneous activation of cultured rat HSCs were also demonstrated by RT-PCR and by immunoblotting. E-cadherin and β-catenin were expressed on opposing cell membranes of GFAP-positive rat HSCs and adjacent hepatocytes in vivo, and between desmin-positive rat HSCs in vitro. With the progression of rat HSC activation in tissue and in culture, E-cadherin disappeared gradually, whereas N-cadherin appeared at the cell periphery. The results of RT-PCR and immunoblotting were concordant with immunocytochemistry findings. In conclusion, resting rat HSCs express E-cadherin and β-catenin both in vivo and in vitro, and E-cadherin switches to N-cadherin during HSC activation. These results suggest that HSC activation represents transdifferentiation from an epithelial to a mesenchymal phenotype.  相似文献   

6.
7.
8.
BackgroundHepatic stellate cells (HSCs) are one of the main cell types involved in liver fibrosis induced by many factors, including schistosomes. Previous studies in our lab have shown that recombinant P40 protein from Schistosoma japonicum (rSjP40) can inhibit HSC activation in vitro. Let-7b is a member of the let-7 microRNA family and plays an inhibitory role in a variety of diseases and inflammatory conditions. In this study, we investigated the role of let-7b in the inhibition of HSC activation by rSjP40.MethodsExpression of let-7b was detected by quantitative real-time PCR. A dual luciferase assay was used to confirm direct interaction between let-7b and collagen I. We also used western blot to assess protein levels of TGFβRI and collagen type I α1 (COL1A1).ResultsWe found that rSjP40 up-regulates expression of let-7b in HSCs. Let-7b inhibits collagen I expression by directly targeting the 3’UTR region of the collagen I gene. Furthermore, we discovered that let-7b inhibitor partially restores the loss of collagen I expression caused by rSjP40.ConclusionOur research clarifies the role of let-7b in the inhibition of HSC activation by rSjP40 and will provide new insights and ideas for the inhibition of HSC activation and treatment of liver fibrosis.  相似文献   

9.
The molecular mechanism leading to the transdifferentiation of hepatic stellate cells (HSC) into myofibroblast-like cells following liver injury is not well understood. The state of cultured rat HSCs was determined using primarily fluorescence microscopy (UV), immunofluorescence (IF) (Glial fibrillary acidic protein (GFAP), Desmin, alpha-smooth muscle actin (alpha-SMA), F-actin) and immunocytochemistry (ICC) (GFAP, Desmin, alpha-SMA, Fibulin-2). Additionally, tapping-mode atomic force microscopy (TM-AFM) and field-emission scanning electron microscopy (FE-SEM) with low-resistivity indium-tin-oxide (ITO) thin-film were performed to observe the micro-morphological character of cells during HSC differentiation. Quiescent HSCs changed to the activated state were identified via UV, IF, and ICC observations. Normal rat HSCs (NHSCs) and thioacetamide-induced rat HSCs (THSCs) were demonstrated to be UV, GFAP+, Desmin+, alpha-SMA+ and Fibulin-2. After F-actin staining, lamellipodia and filopodia were found in both NHSCs and THSCs, but membrane ruffles were only seen in THSCs. The micro-structures of lamellipodia and filopodia in both NHSCs and THSCs were confirmed using FE-SEM and TM-AFM with ITO; in contrast, the micro-projection was not found. Moreover, “aerial root” structures were observed for the first time in the filopodia of THSCs using TM-AFM. These results reveal that HSC transdifferentiation to a myofibroblastic-like cell (activated HSC) from thioacetamide-induced rat HSC induces extensive changes in the cytoskeleton.  相似文献   

10.
Hepatic fibrosis induced by egg deposition is the most serious pathology associated with chronic schistosomiasis, in which the hepatic stellate cell (HSC) plays a central role. While the effect of Schistosoma mansoni eggs on the fibrogenic phenotype of HSCs has been investigated, studies determining the effect of eggs of S . japonicum on HSCs are lacking. Disease caused by S . japonicum is much more severe than that resulting from S. mansoni infection so it is important to compare the pathologies caused by these two parasites, to determine whether this phenotype is due to the species interacting differently with the mammalian host. Accordingly, we investigated the effect of S japonicum eggs on the human HSC cell line, LX-2, with and without TGF-β (Transforming Growth Factor beta) co-treatment, so as to determine the impact on genes associated with fibrogenesis, inflammation and matrix re-organisation. Activation status of HSCs was assessed by αSMA (Alpha Smooth Muscle Actin) immunofluorescence, accumulation of Oil Red O-stained lipid droplets and the relative expression of selected genes associated with activation. The fibrogenic phenotype of HSCs was inhibited by the presence of eggs both with or without TGF-β treatment, as evidenced by a lack of αSMA staining and reduced gene expression of αSMA and Col1A1 (Collagen 1A1). Unlike S. mansoni-treated cells, however, expression of the quiescent HSC marker PPAR-γ (Peroxisome Proliferator-Activated Receptor gamma) was not increased, nor was there accumulation of lipid droplets. In contrast, S . japonicum eggs induced the mRNA expression of MMP-9 (Matrix Metalloproteinase 9), CCL2 (Chemokine (C-C motif) Ligand 2) and IL-6 (Interleukin 6) in HSCs indicating that rather than inducing complete HSC quiescence, the eggs induced a proinflammatory phenotype. These results suggest HSCs in close proximity to S . japonicum eggs in the liver may play a role in the proinflammatory regulation of hepatic granuloma formation.  相似文献   

11.
Scar formation inhibits tissue repair and regeneration in the liver and central nervous system. Activation of hepatic stellate cells (HSCs) after liver injury or of astrocytes after nervous system damage is considered to drive scar formation. HSCs are the fibrotic cells of the liver, as they undergo activation and acquire fibrogenic properties after liver injury. HSC activation has been compared to reactive gliosis of astrocytes, which acquire a reactive phenotype and contribute to scar formation after nervous system injury, much like HSCs after liver injury. It is intriguing that a wide range of neuroglia-related molecules are expressed by HSCs. We identified an unexpected role for the p75 neurotrophin receptor in regulating HSC activation and liver repair. Here we discuss the molecular mechanisms that regulate HSC activation and reactive gliosis and their contributions to scar formation and tissue repair. Juxtaposing key mechanistic and functional similarities in HSC and astrocyte activation might provide novel insight into liver regeneration and nervous system repair.Key words: p75 neurotrophin receptor, transforming growth factor-β, neurotrophins, epidermal growth factor, extracellular matrix, collagen, chondroitin sulfate proteoglycans, matrix metalloproteinases, scar, neurons, hepatocytes  相似文献   

12.
13.
The number and self‐renewal capacity of hematopoietic stem cells (HSCs) are tightly regulated at different developmental stages. Many pathways have been implicated in regulating HSC development in cell autonomous manners; however, it remains unclear how HSCs sense and integrate developmental cues. In this study, we identified an extrinsic mechanism by which HSC number and functions are regulated during mouse puberty. We found that the HSC number in postnatal bone marrow reached homeostasis at 4 weeks after birth. Luteinizing hormone, but not downstream sex hormones, was involved in regulating HSC homeostasis during this period. Expression of luteinizing hormone receptor (Lhcgr) is highly restricted in HSCs and multipotent progenitor cells in the hematopoietic hierarchy. When Lhcgr was deleted, HSCs continued to expand even after 4 weeks after birth, leading to abnormally elevated hematopoiesis and leukocytosis. In a murine acute myeloid leukemia model, leukemia development was significantly accelerated upon Lhcgr deletion. Together, our work reveals an extrinsic counting mechanism that restricts HSC expansion during development and is physiologically important for maintaining normal hematopoiesis and inhibiting leukemogenesis.  相似文献   

14.
ObjectivesDNA damages pose threats to haematopoietic stem cells (HSC) maintenance and haematopoietic system homeostasis. Quiescent HSCs in adult mouse bone marrow are resistant to DNA damage, while human umbilical cord blood‐derived proliferative HSCs are prone to cell death upon ionizing radiation. Murine embryonic HSCs proliferate in foetal livers and divide symmetrically to generate HSC pool. How murine embryonic HSCs respond to DNA damages is not well‐defined.Materials and methodsMice models with DNA repair molecule Nbs1 or Nbs1/p53 specifically deleted in embryonic HSCs were generated. FACS analysis, in vitro and in vivo HSC differentiation assays, qPCR, immunofluorescence and Western blotting were used to delineate roles of Nbs1‐p53 signaling in HSCs and haematopoietic progenitors.ResultsNbs1 deficiency results in persistent DNA breaks in embryonic HSCs, compromises embryonic HSC development and finally results in mouse perinatal lethality. The persistent DNA breaks in Nbs1 deficient embryonic HSCs render cell cycle arrest, while driving a higher rate of cell death in haematopoietic progenitors. Although Nbs1 deficiency promotes Atm‐Chk2‐p53 axis activation in HSCs and their progenies, ablation of p53 in Nbs1 deficient HSCs accelerates embryonic lethality.ConclusionsOur study discloses that DNA double‐strand repair molecule Nbs1 is essential in embryonic HSC development and haematopoiesis. Persistent DNA damages result in distinct cell fate in HSCs and haematopoietic progenitors. Nbs1 null HSCs tend to be maintained through cell cycle arrest, while Nbs1 null haematopoietic progenitors commit cell death. The discrepancies are mediated possibly by different magnitude of p53 signaling.  相似文献   

15.
Hepatic stellate cells (HSCs) play an important role in liver fibrosis; however, owing to the heterogeneity and limited supply of primary HSCs, the development of in vitro liver fibrosis models has been impeded. In this study, we established and characterized a novel human HSC line (LSC-1), and applied it to various types of three-dimensional (3D) co-culture systems with differentiated HepaRG cells. Furthermore, we compared LSC-1 with a commercially available HSC line on conventional monolayer culture. LSC-1 exhibited an overall upregulation of the expression of fibrogenic genes along with increased levels of matrix and adhesion proteins, suggesting a myofibroblast-like or transdifferentiated state. However, activated states reverted to a quiescent-like phenotype when cultured in different 3D culture formats with a relatively soft microenvironment. Additionally, LSC-1 exerted an overall positive effect on co-cultured differentiated HepaRG, which significantly increased hepatic functionality upon long-term cultivation compared with that achieved with other HSC line. In 3D spheroid culture, LSC-1 exhibited enhanced responsiveness to transforming growth factor beta 1 exposure that is caused by a different matrix-related protein expression mechanism. Therefore, the LSC-1 line developed in this study provides a reliable candidate model that can be used to address unmet needs, such as development of antifibrotic therapies.  相似文献   

16.
Primary hepatocytes lose their differentiated functions rapidly when in culture. Our aim was to maintain the differentiated status of hepatocytes in vitro by means of vital hepatic stellate cells (HSCs), their soluble and particulate factors and lipid extracts. Hepatocytes were placed into collagen-coated culture dishes in the presence of HSCs at different ages of pre-culture, with or without direct cell to cell contacts, at different cell ratios and in monoculture with cellular HSC components in place of vital cells. Changes in morphology and enhancement of phosphoenolpyruvate carboxykinase (PCK) activity by glucagon were used to determine the differentiated status of hepatocytes in 2d-short-term culture. HSCs proved able to maintain the differentiated function of hepatocytes in co-culture either by direct cell contacts or via factors derived from HSC-conditioned medium. In comparison, however, without cellular contact to hepatocytes five to ten times as many HSCs were necessary to increase the PCK activity to the same degree as in the presence of intercellular contacts. Whereas stimulation in the presence of HSC/hepatocyte contacts was independent of HSC culture age only quiescent, resting HSCs (precultured for 1–2 d) were able to stimulate hepatocytes significantly via soluble factors. Culturing of hepatocytes with a lipid extract or a particulate fraction from HSCs clearly displayed a very strong beneficial effect on enzyme activity and morphology. HSCs maintain hepatocyte function and structure through preferentially cell-bound signalling and transfer of lipids.  相似文献   

17.
Allogeneic hematopoietic stem cell (HSC) transplantations from umbilical cord blood or autologous HSCs for gene therapy purposes are hampered by limited number of stem cells. To test the ability to expand HSCs in vitro prior to transplantation, two growth factor cocktails containing stem cell factor, thrombopoietin, fms-related tyrosine kinase-3 ligand (STF) or stem cell factor, thrombopoietin, insulin-like growth factor-2, fibroblast growth factor-1 (STIF) either with or without the addition of angiopoietin-like protein-3 (Angptl3) were used. Culturing HSCs in STF and STIF media for 7 days expanded long-term repopulating stem cells content in vivo by ∼6-fold and ∼10-fold compared to freshly isolated stem cells. Addition of Angptl3 resulted in increased expansion of these populations by ∼17-fold and ∼32-fold, respectively, and was further supported by enforced expression of Angptl3 in HSCs through lentiviral transduction that also promoted HSC expansion. As expansion of highly purified lineage-negative, Sca-1+, c-Kit+ HSCs was less efficient than less pure lineage-negative HSCs, Angptl3 may have a direct effect on HCS but also an indirect effect on accessory cells that support HSC expansion. No evidence for leukemia or toxicity was found during long-term follow up of mice transplanted with ex vivo expanded HSCs or manipulated HSC populations that expressed Angptl3. We conclude that the cytokine combinations used in this study to expand HSCs ex vivo enhances the engraftment in vivo. This has important implications for allogeneic umbilical cord-blood derived HSC transplantations and autologous HSC applications including gene therapy.  相似文献   

18.

Background

Recent studies have shown that microRNA-29 (miR-29) is significantly decreased in liver fibrosis and that its downregulation influences the activation of hepatic stellate cells (HSCs). In addition, inhibition of the activity of histone deacetylases 4 (HDAC4) has been shown to strongly reduce HSC activation in the context of liver fibrosis.

Objectives

In this study, we examined whether miR-29a was involved in the regulation of HDAC4 and modulation of the profibrogenic phenotype in HSCs.

Methods

We employed miR-29a transgenic mice (miR-29aTg mice) and wild-type littermates to clarify the role of miR-29a in cholestatic liver fibrosis, using the bile duct-ligation (BDL) mouse model. Primary HSCs from both mice were treated with a miR-29a mimic and antisense inhibitor in order to analyze changes in profibrogenic gene expression and HSC activation using real-time quantitative RT-PCR, immunofluorescence staining, western blotting, and cell proliferation and migration assays.

Results

After BDL, overexpression of miR-29a decreased collagen-1α1, HDAC4 and activated HSC markers of glial fibrillary acidic protein expression in miR-29aTg mice compared to wild-type littermates. Overexpression of miR-29a and HDAC4 RNA-interference decreased the expression of fibrotic genes, HDAC4 signaling, and HSC migration and proliferation. In contrast, knockdown of miR-29a with an antisense inhibitor increased HDAC4 function, restored HSC migration, and accelerated HSC proliferation.

Conclusions

Our results indicate that miR-29a ameliorates cholestatic liver fibrosis after BDL, at least partially, by modulating the profibrogenic phenotype of HSCs through inhibition of HDAC4 function.  相似文献   

19.
Kyba M  Perlingeiro RC  Daley GQ 《Cell》2002,109(1):29-37
The extent to which primitive embryonic blood progenitors contribute to definitive lymphoid-myeloid hematopoiesis in the adult remains uncertain. In an effort to characterize factors that distinguish the definitive adult hematopoietic stem cell (HSC) and primitive progenitors derived from yolk sac or embryonic stem (ES) cells, we examined the effect of ectopic expression of HoxB4, a homeotic selector gene implicated in self-renewal of definitive HSCs. Expression of HoxB4 in primitive progenitors combined with culture on hematopoietic stroma induces a switch to the definitive HSC phenotype. These progenitors engraft lethally irradiated adults and contribute to long-term, multilineage hematopoiesis in primary and secondary recipients. Our results suggest that primitive HSCs are poised to become definitive HSCs and that this transition can be promoted by HoxB4 expression. This strategy for blood engraftment enables modeling of hematopoietic transplantation from ES cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号