首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AimsThis study investigates the actions of KMUP-1 on RhoA/Rho-kinase (ROCK)-dependent Ca2+ sensitization and the K+-channel in chronic pulmonary arterial hypertension (PAH) rats.Main methodsSprague–Dawley rats were divided into control, monocrotaline (MCT), and MCT + KMUP-1 groups. PAH was induced by a single intraperitoneal injection (i.p.) of MCT (60 mg/kg). KMUP-1 (5 mg/kg, i.p.) was administered once daily for 21 days to prevent MCT-induced PAH. All rats were sacrificed on day 22.Key findingsMCT-induced increased right ventricular systolic pressure (RVSP) and right ventricular hypertrophy were prevented by KMUP-1. In myograph experiments, KCl (80 mM), phenylephrine (10 µM) and K+ channel inhibitors (TEA, 10 mM; paxilline, 10 µM; 4-AP, 5 mM) induced weak PA contractions in MCT-treated rats compared to controls, but the PA reactivity was restored in MCT + KMUP-1-treated rats. By contrast, in β-escin- or α-toxin-permeabilized PAs, CaCl2-induced (1.25 mM, pCa 5.1) contractions were stronger in MCT-treated rats, and this action was suppressed in MCT + KMUP-1-treated rats. PA relaxation in response to the ROCK inhibitor Y27632 (0.1 μM) was much higher in MCT-treated rats than in control rats. In Western blot analysis, the expression of Ca2+-activated K+ (BKCa) and voltage-gated K+ channels (Kv2.1 and Kv1.5), and ROCK II proteins was elevated in MCT-treated rats and suppressed in MCT + KMUP-1-treated rats. We suggest that MCT-treated rats upregulate K+-channel proteins to adapt to chronic PAH.SignificanceKMUP-1 protects against PAH and restores PA vessel tone in MCT-treated rats, attributed to alteration of Ca2+ sensitivity and K+-channel function.  相似文献   

2.
《FEBS letters》2014,588(9):1571-1579
Membrane androgen receptors (mAR) are expressed in several tumors. mAR activation by testosterone albumin conjugates (TAC) suppresses tumor growth and migration. mAR signaling involves phosphoinositide-3-kinase (PI3K) and Rho-associated protein kinase (ROCK). PI3K stimulates serum- and glucocorticoid-inducible kinase SGK1, which in turn activates Na+/H+-exchangers (NHE). In prostate cancer cells cytosolic pH (pHi) was determined utilizing 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-fluorescence and NHE-activity utilizing Na+-dependent cytosolic realkalinization following an ammonium pulse. TAC (100 nM) significantly increased pHi and NHE-activity, effects abrogated by NHE1-inhibitor cariporide (10 μM), SGK1-inhibitors EMD638683 (50 μM) and GSK650349 (10 μM) and ROCK-inhibitors Y-27632 (10 μM) and fasudil (100 μM). TAC treatment rapidly and significantly increased cell volume and actin polymerization, effects abolished in the presence of cariporide. Thus, mAR-activation activates cariporide-sensitive Na+/H+-exchangers, an effect requiring SGK1 and ROCK activity.  相似文献   

3.
The details of cardiac Ca2+ signaling within the dyadic junction remain unclear because of limitations in rapid spatial imaging techniques, and availability of Ca2+ probes localized to dyadic junctions. To critically monitor ryanodine receptors’ (RyR2) Ca2+ nano-domains, we combined the use of genetically engineered RyR2-targeted pericam probes, (FKBP-YCaMP, Kd = 150 nM, or FKBP-GCaMP6, Kd = 240 nM) with rapid total internal reflectance fluorescence (TIRF) microscopy (resolution, ∼80 nm). The punctate z-line patterns of FKBP,2-targeted probes overlapped those of RyR2 antibodies and sharply contrasted to the images of probes targeted to sarcoplasmic reticulum (SERCA2a/PLB), or cytosolic Fluo-4 images. FKBP-YCaMP signals were too small (∼20%) and too slow (2–3 s) to detect Ca2+ sparks, but the probe was effective in marking where Fluo-4 Ca2+ sparks developed. FKBP-GCaMP6, on the other hand, produced rapidly decaying Ca2+ signals that: a) had faster kinetics and activated synchronous with ICa3 but were of variable size at different z-lines and b) were accompanied by spatially confined spontaneous Ca2+ sparks, originating from a subset of eager sites. The frequency of spontaneously occurring sparks was lower in FKBP-GCaMP6 infected myocytes as compared to Fluo-4 dialyzed myocytes, but isoproterenol enhanced their frequency more effectively than in Fluo-4 dialyzed cells. Nevertheless, isoproterenol failed to dissociate FKBP-GCaMP6 from the z-lines. The data suggests that FKBP-GCaMP6 binds predominantly to junctional RyR2s and has sufficient on-rate efficiency as to monitor the released Ca2+ in individual dyadic clefts, and supports the idea that β-adrenergic agonists may modulate the stabilizing effects of native FKBP on RyR2.  相似文献   

4.
Application of fluid pressure (FP) using pressurized fluid flow suppresses the L-type Ca2+ current through both enhancement of Ca2+ release and intracellular acidosis in ventricular myocytes. As FP-induced intracellular acidosis is more severe during the inhibition of Na+–H+ exchange (NHE), we examined the possible role of NHE in the regulation of ICa during FP exposure using HOE642 (cariporide), a specific NHE inhibitor. A flow of pressurized (∼16 dyn/cm2) fluid was applied onto single rat ventricular myocytes, and the ICa was monitored using a whole-cell patch-clamp under HEPES-buffered conditions. In cells pre-exposed to FP, additional treatment with HOE642 dose-dependently suppressed the ICa (IC50 = 0.97 ± 0.12 μM) without altering current–voltage relationships and inactivation time constants. In contrast, the ICa in control cells was not altered by HOE642. The HOE642 induced a left shift in the steady-state inactivation curve. The suppressive effect of HOE642 on the ICa under FP was not altered by intracellular high Ca2+ buffering. Replacement of external Cl with aspartate to inhibit the Cl-dependent acid loader eliminated the inhibitory effect of HOE642 on ICa. These results suggest that NHE may attenuate FP-induced ICa suppression by preventing intracellular H+ accumulation in rat ventricular myocytes and that NHE activity may not be involved in the Ca2+-dependent inhibition of the ICa during FP exposure.  相似文献   

5.
The mechanical properties of ventricular myocardium of the South American lungfish, Lepidosiren paradoxa, acclimated to 25 °C, were evaluated in vitro at 15, 25 and 35 °C. The inotropism (Fc—% of initial values) of ventricle strips was examined in response to adrenaline (from 10−8 to 10−5 M) and extracellular calcium (from 2.5 to 14.5 mM) in all experimental temperatures. At 15 and 25 °C, Fc rose when extracellular Ca2+ or adrenaline were increased, while Fc remained unchanged at 35 °C. These results suggest that at lower temperatures Ca2+ availability is a limiting step to cardiac performance and can be ameliorated by adrenergic stimulation. In contrast, since inotropic agents failed to increase cardiac inotropism at 35 °C, lungfish myocytes seem to show a high temperature sensitivity, which increases Ca2+-buffering capacity and/or Ca2+ transportation from and to cytosol as well as myofilaments Ca2+ sensitivity.  相似文献   

6.
BackgroundTestosterone deficiency in elderly men increases the risk of cardiovascular disease. In bilateral orchiectomized (ORX) animals, impaired cardiac Ca2+ regulation was observed, and this impairment could be improved by testosterone replacement, indicating the important role of testosterone in cardiac Ca2+ regulation. However, the temporal changes of Ca2+ dyshomeostasis in testosterone-deprived conditions are unclear. Moreover, the effects of early vs. late testosterone replacement are unknown. We hypothesized that the longer the deprivation of testosterone, the greater the impairment of cardiac Ca2+ homeostasis, and that early testosterone replacement can effectively reduce this adverse effect.MethodsMale Wistar rats were randomly divided into twelve groups, four sets of three. The first set were ORX for 2, 4 and 8 weeks, the second set were sham-operated groups of the same periods, the third set were ORX for 8 weeks coupled with a subcutaneous injection of vehicle (control), testosterone during weeks 1–8 (early replacement) or testosterone during weeks 5–8 (late replacement), and finally the 12-week sham-operated, ORX and ORX treated with testosterone groups. Cardiac Ca2+ transients (n = 4-5/group), L-type calcium current (ICa-L) (n = 4/group), Ca2+ regulatory proteins (n = 6/group) and cardiac function (n = 5/group) were determined.ResultsIn the ORX rats, impaired cardiac Ca2+ transients and reduced ICa-L were observed initially 4 weeks after ORX as shown by decreased Ca2+ transient amplitude, rising rate and maximum and average decay rates. No alteration of Ca2+ regulatory proteins such as the L-type Ca2+ channels, ryanodine receptor type 2, Na+-Ca2+ exchangers and SERCA2a were observed. Early testosterone replacement markedly improved cardiac Ca2+ transients, whereas late testosterone replacement did not. The cardiac contractility was also improved after early testosterone replacement.ConclusionsImpaired cardiac Ca2+ homeostasis is time-dependent after testosterone deprivation. Early testosterone replacement improves cardiac Ca2+ transient regulation and contractility, suggesting the necessity of early intervention in conditions of testosterone-deprivation.  相似文献   

7.
《Cell calcium》2010,47(5-6):347-355
TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl)-ethylenediamine) is a membrane-permeable heavy-metal ion chelator with a dissociation constant for Ca2+ comparable to the Ca2+ concentration ([Ca2+]) within the intracellular Ca2+ stores. It has been used as modulator of intracellular heavy metals and of free intraluminal [Ca2+], without influencing the cytosolic [Ca2+] that falls in the nanomolar range. In our previous studies, we gave evidence that TPEN modifies the Ca2+ homeostasis of striated muscle independent of this buffering ability. Here we describe the direct interaction of TPEN with the ryanodine receptor (RyR) Ca2+ release channel and the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA). In lipid bilayers, at negative potentials and low [Ca2+], TPEN increased the open probability of RyR, while at positive potentials it inhibited channel activity. On permeabilized skeletal muscle fibers of the frog, but not of the rat, 50 μM TPEN increased the number of spontaneous Ca2+ sparks and induced propagating events with a velocity of 273 ± 7 μm/s. Determining the hydrolytic activity of the SR revealed that TPEN inhibits the SERCA pump, with an IC50 = 692 ± 62 μM and a Hill coefficient of 0.88 ± 0.10. These findings provide experimental evidence that TPEN directly modifies both the release of Ca2+ from and its reuptake into the SR.  相似文献   

8.
Local Ca2+ spark releases are essential to the Ca2+ cycling process. Thus, they play an important role in ventricular and atrial cell contraction, as well as in sinoatrial cell automaticity. Characterizing their properties in healthy cells from different regions in the heart can reveal the basic biophysical differences among these regions. We designed a semi-automatic Matlab Graphical User Interface (called Sparkalyzer) to characterize parameters of Ca2+ spark release from any major cardiac tissue, as recorded in line-scan mode with a confocal laser-scanning microscope. We validated the algorithm on experimental images from rabbit sinoatrial, atrial, and ventricular cells loaded with Fluo-4 AM. The program characterizes general image parameters of Ca2+ transients and sparks: spark duration, which indicates for how long the spark provides Ca2+ to the closed intracellular mechanisms (typical value: 25 ± 1, 23 ± 1, 26 ± 1 ms for sinoatrial, atrial, and ventricular cells, respectively); spark amplitude, which indicates the amount of Ca2+ released by a single spark (1.6 ± 0.1, 1.6 ± 0.2, 1.4 ± 0.1 F/F0 for sinoatrial, atrial, and ventricular cells, respectively); spark length, which is the length of the Ca2+ wavelets fired out of a row of ryanodine receptors (5 ± 0.1, 5 ± 0.2, 3.4 ± 0.3 μm for sinoatrial, atrial, or ventricular cells, respectively) and number of sparks (0.14 ± 0.02, 0.025 ± 0.01, 0.02 ± 0.01 for 1 μm in 1 s for sinoatrial, atrial, and ventricular cells, respectively). This method is reliable for Ca2+ spark analysis of sinoatrial, atrial, or ventricular cells. Moreover, by examining the average value of Ca2+ spark characteristics and their scattering around the mean, atrial, ventricular and sinoatrial cells can be differentiated.  相似文献   

9.
In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29 ± 0.009 Hz (n = 43) and an amplitude of 14.6 ± 1.25 mg (n = 29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5 mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30–50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2+ channels and Ca2+ release from RyRs play an essential role in pacing SRCs and that Ca2+ release from IP3Rs may play a role in modulating the amplitude of SRCs, probably via activation of PLC.  相似文献   

10.
11.
Mitochondrial Ca2+ activates many processes, from mitochondrial metabolism to opening of the permeability transition pore (PTP) and apoptosis. However, there is considerable controversy regarding the free mitochondrial [Ca2+] ([Ca2+]M) levels that can be attained during cell activation or even in mitochondrial preparations. Studies using fluorescent dyes (rhod-2 or similar), have reported that phosphate precipitation precludes [Ca2+]M from increasing above 2–3 μM. Instead, using low-Ca2+-affinity aequorin probes, we have measured [Ca2+]M values more than two orders of magnitude higher. We confirm here these values by making a direct in situ calibration of mitochondrial aequorin, and we show that a prolonged increase in [Ca2+]M to levels of 0.5–1 mM was actually observed at any phosphate concentration (0–10 mM) during continuous perfusion of 3.5–100 μM Ca2+-buffers. In spite of this high and maintained (>10 min) [Ca2+]M, mitochondria retained functionality and the [Ca2+]M drop induced by a protonophore was fully reversible. In addition, this high [Ca2+]M did not induce PTP opening unless additional activators (phenyl arsine oxide, PAO) were present. PAO induced a rapid, concentration-dependent and irreversible drop in [Ca2+]M. In conclusion [Ca2+]M levels of 0.5–1 mM can be reached and maintained for prolonged periods (>10 min) in phosphate-containing medium, and massive opening of PTP requires additional pore activators.  相似文献   

12.
13.
The effect of Ca2+ applied in high concentrations (50 and 300 µM) was addressed on the generation of reactive oxygen species in isolated mitochondria from guinea-pig brain. The experiments were performed in the presence of ADP, a very effective inhibitor of mitochondrial permeability transition. Moderate increase in H2O2 release from mitochondria was induced by Ca2+ applied in 50 µM, but not in 300 µM concentration as measured with Amplex red fluorescent assay starting with a delay of 100-150 sec after exposure to Ca2+. Parallel measurements of membrane potential (ΔΨm) by safranine fluorescence showed a transient depolarization by Ca2+ followed by the recovery of ΔΨm to a value, which was more negative than that observed before addition of Ca2+ indicating a relative hyperpolarization. NAD(P)H fluorescence was also increased by Ca2+ given in 50 µM concentration. In mitochondria having high ΔΨm in the presence of oligomycin or ATP, the basal rate of release of H2O2 was significantly higher than that observed in a medium containing ADP and Ca2+ no longer increased but rather decreased the rate of H2O2 release. With 300 µM Ca2+ only a loss but no tendency of a recovery of ΔΨm was detected and H2O2 release was unchanged. It is suggested that in the presence of nucleotides the effect of Ca2+ on mitochondrial ROS release is related to changes in ΔΨm; in depolarized mitochondria, in the presence of ADP, moderate increase in H2O2 release is induced by calcium, but only in ≤ 100 µM concentration, when after a transient Ca2+-induced depolarization mitochondria became more polarized. In highly polarized mitochondria, in the presence of ATP or oligomycin, where no hyperpolarization follows the Ca2+-induced depolarization, Ca2+ fails to stimulate mitochondrial ROS generation. These effects of calcium (≤ 300 µM) are unrelated to mitochondrial permeability transition.  相似文献   

14.
《Phytomedicine》2013,21(14):1272-1279
This study aimed to investigate the effect of magnolol (5,5′-diallyl-2,2′-biphenyldiol) on contraction in distal colonic segments of rats and the underlying mechanisms. Colonic segments were mounted in organ baths for isometric force measurement. Whole-cell voltage-sensitive L-type Ca2+ currents were recorded on isolated single colonic smooth muscle cells using patch-clamp technique. The spontaneous contractions and acetylcholine (ACh)- and Bay K 8644-induced contractions were inhibited by magnolol (3–100 μM). In the presence of Bay K8644 (100 nM), magnolol (10–100 μM) inhibited the contraction induced by 10 μM ACh. By contrast, tetrodotoxin (100 nM) and Nώ-nitro-l-arginine methyl ester (l-NAME 100 μM) did not change the inhibitory effect of magnolol (10 μM). In addition, magnolol (3–100 μM) inhibited the L-type Ca2+ currents. The present results suggest that magnolol inhibits colonic smooth muscle contraction through downregulating L-type Ca2+ channel activity.  相似文献   

15.
《Process Biochemistry》2007,42(3):344-351
A strategy that optimization of medium compositions for maximum biomass followed by feeding of sucrose for maximum polysaccharide synthesis was developed for enhancing polysaccharide production in suspension culture of protocorm-like bodies (PLBs) of Dendrobium huoshanense C.Z. Tang et S.J. Cheng. In growth stage, the original half-strength MS medium was optimized with carbon sources, nitrogen sources and metal ion combinations. The effects of different carbon sources on PLBs growth were remarkable and sucrose at 35 g l−1 was the most suitable. Sole nitrate nitrogen of 30 mmol l−1 was the best for PLBs growth. Metal ions (Ca2+, Fe2+, Mn2+ and Zn2+) showed different influences on PLBs growth. The optimal concentration of Ca2+, Fe2+, Mn2+ and Zn2+ was 4.5 mmol l−1, 0.1 mmol l−1, 0.5 mmol l−1 and 0.06 mmol l−1, respectively. In the optimized medium (sucrose, nitrate, Ca2+, Fe2+, Mn2+ and Zn2+ concentration as described above, the other component concentration seen in half-strength MS), 33.9 g DW l−1 PLBs were harvested after 30 days of culture and biomass increase was improved 245% as compared with that in the original medium. In production stage, polysaccharide synthesis was significantly improved by the feeding sucrose. The maximum polysaccharide production (22 g l−1) was obtained in the case of 50 g l−1 sucrose feeding at day 30 of culture, which was about 109-fold higher than that in the original medium without feeding of sucrose.  相似文献   

16.
17.
The scorpion toxin maurocalcine acts as a high affinity agonist of the type-1 ryanodine receptor expressed in skeletal muscle. Here, we investigated the effects of the reducing agent dithiothreitol or the oxidizing reagent thimerosal on type-1 ryanodine receptor stimulation by maurocalcine. Maurocalcine addition to sarcoplasmic reticulum vesicles actively loaded with calcium elicited Ca2+ release from native vesicles and from vesicles pre-incubated with dithiothreitol; thimerosal addition to native vesicles after Ca2+ uptake completion prevented this response. Maurocalcine enhanced equilibrium [3H]-ryanodine binding to native and to dithiothreitol-treated reticulum vesicles, and increased 5-fold the apparent Ki for Mg2+ inhibition of [3H]-ryanodine binding to native vesicles. Single calcium release channels incorporated in planar lipid bilayers displayed a long-lived open sub-conductance state after maurocalcine addition. The fractional time spent in this sub-conductance state decreased when lowering cytoplasmic [Ca2+] from 10 μM to 0.1 μM or at cytoplasmic [Mg2+]  30 μM. At 0.1 μM [Ca2+], only channels that displayed poor activation by Ca2+ were readily activated by 5 nM maurocalcine; subsequent incubation with thimerosal abolished the sub-conductance state induced by maurocalcine. We interpret these results as an indication that maurocalcine acts as a more effective type-1 ryanodine receptor channel agonist under reducing conditions.  相似文献   

18.
The palmitate/Ca2 +-induced (Pal/Ca2 +) pore, which is formed due to the unique feature of long-chain saturated fatty acids to bind Ca2 + with high affinity, has been shown to play an important role in the physiology of mitochondria. The present study demonstrates that the efflux of Ca2 + from rat liver mitochondria induced by ruthenium red, an inhibitor of the energy-dependent Ca2 + influx, seems to be partly due to the opening of Pal/Ca2 + pores. Exogenous Pal stimulates the efflux. Measurements of pH showed that the Ca2 +-induced alkalization of the mitochondrial matrix increased in the presence of Pal. The influx of Ca2 + (Sr2 +) also induced an outflow of K+ followed by the reuptake of the ion by mitochondria. The outflow was not affected by a K+/H+ exchange blocker, and the reuptake was prevented by an ATP-dependent K+ channel inhibitor. It was also shown that the addition of Sr2 + to mitochondria under hypotonic conditions was accompanied by reversible cyclic changes in the membrane potential, the concentrations of Sr2 + and K+ and the respiratory rate. The cyclic changes were effectively suppressed by the inhibitors of Ca2 +-dependent phospholipase A2, and a new Sr2 + cycle could only be initiated after the previous cycle was finished, indicating a refractory period in the mitochondrial sensitivity to Sr2 +. All of the Ca2 +- and Sr2 +-induced effects were observed in the presence of cyclosporin A. This paper discusses a possible role of Pal/Ca2 + pores in the maintenance of cell ion homeostasis.  相似文献   

19.
《Cell calcium》2015,58(5-6):366-375
In healthy pancreatic islets, glucose-stimulated changes in intracellular calcium ([Ca2+]i) provide a reasonable reflection of the patterns and relative amounts of insulin secretion. We report that [Ca2+]i in islets under stress, however, dissociates with insulin release in different ways for different stressors. Islets were exposed for 48 h to a variety of stressors: cytokines (low-grade inflammation), 28 mM glucose (28G, glucotoxicity), free fatty acids (FFAs, lipotoxicity), thapsigargin (ER stress), or rotenone (mitochondrial stress). We then measured [Ca2+]i and insulin release in parallel studies. Islets exposed to all stressors except rotenone displayed significantly elevated [Ca2+]i in low glucose, however, increased insulin secretion was only observed for 28G due to increased nifedipine-sensitive calcium-channel flux. Following 3–11 mM glucose stimulation, all stressors substantially reduced the peak glucose-stimulated [Ca2+]i response (first phase). Thapsigargin and cytokines also substantially impacted aspects of calcium influx and ER calcium handling. Stressors did not significantly impact insulin secretion in 11 mM glucose for any stressor, although FFAs showed a borderline reduction, which contributed to a significant decrease in the stimulation index (11:3 mM glucose) observed for FFAs and also for 28G. We also clamped [Ca2+]i using 30 mM KCl + 250 μM diazoxide to test the amplifying pathway. Only rotenone-treated islets showed a robust increase in 3–11 mM glucose-stimulated insulin secretion under clamped conditions, suggesting that low-level mitochondrial stress might activate the metabolic amplifying pathway. We conclude that different stressors dissociate [Ca2+]i from insulin secretion differently: ER stressors (thapsigargin, cytokines) primarily affect [Ca2+]i but not conventional insulin secretion and ‘metabolic’ stressors (FFAs, 28G, rotenone) impacted insulin secretion.  相似文献   

20.
《Phytomedicine》2014,21(7):931-935
Matrine, a alkaloid of the root of Sophora flavescens, has multiple protective effects on the cardiovascular system including cardiac arrhythmias. However, the molecular and ionic mechanisms of matrine have not been well investigated. Our study aimed at to shed a light on the issue to investigate the antiarrhythmic effects of matrine by using ouabain to construct an arrhythmic model of cardiomyocytes. In this experiment, matrine significantly and dose-dependently increased the doses of ouabain required to induce cardiac arrhythmias and decreased the duration of arrhythmias in guinea pigs. In cardiomyocytes of guinea pigs, ouabain 10 μM prolonged action potential duration by 80% (p < 0.05) and increased L-type Ca2+ currents and Ca2+ transients induced by KCl (p < 0.05). Matrine 100 μM shortened the prolongation of APD and prevented the increase of L-type Ca2+ currents and Ca2+ transients induced by ouabain. Taken together, these findings provide the first evidence that matrine possessed arrhythmogenic effect of ouabain by inhibiting of L-type Ca2+ currents and Ca2+ overload in guinea pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号