首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Herbivores consider the variation of forage qualities (nutritional content and digestibility) as well as quantities (biomass) when foraging. Such selection patterns may change based on the scale of foraging, particularly in the case of ungulates that forage at many scales.
  2. To test selection for quality and quantity in free‐ranging herbivores across scales, however, we must first develop landscape‐wide quantitative estimates of both forage quantity and quality. Stoichiometric distribution models (StDMs) bring opportunity to address this because they predict the elemental measures and stoichiometry of resources at landscape extents.
  3. Here, we use StDMs to predict elemental measures of understory white birch quality (% nitrogen) and quantity (g carbon/m2) across two boreal landscapes. We analyzed global positioning system (GPS) collared moose (n = 14) selection for forage quantity and quality at the landscape, home range, and patch extents using both individual and pooled resource selection analyses. We predicted that as the scale of resource selection decreased from the landscape to the patch, selection for white birch quantity would decrease and selection for quality would increase.
  4. Counter to our prediction, pooled‐models showed selection for our estimates of quantity and quality to be neutral with low explanatory power and no scalar trends. At the individual‐level, however, we found evidence for quality and quantity trade‐offs, most notably at the home‐range scale where resource selection models explain the largest amount of variation in selection. Furthermore, individuals did not follow the same trade‐off tactic, with some preferring forage quantity over quality and vice versa.
  5. Such individual trade‐offs show that moose may be flexible in attaining a limiting nutrient. Our findings suggest that herbivores may respond to forage elemental compositions and quantities, giving tools like StDMs merit toward animal ecology applications. The integration of StDMs and animal movement data represents a promising avenue for progress in the field of zoogeochemistry.
  相似文献   

2.
  1. For birds, maintaining an optimal nest temperature is critical for early‐life growth and development. Temperatures deviating from this optimum can affect nestling growth and fledging success with potential consequences on survival and lifetime reproductive success. It is therefore particularly important to understand these effects in relation to projected temperature changes associated with climate change.
  2. Targets set by the 2015 Paris Agreement aim to limit temperature increases to 2°C, and, with this in mind, we carried out an experiment in 2017 and 2018 where we applied a treatment that increased Great Tit Parus major nest temperature by approximately this magnitude (achieving an increase of 1.6°C, relative to the control) during the period from hatching to fledging to estimate how small temperature differences might affect nestling body size and weight at fledging and fledging success.
  3. We recorded hatching and fledging success and measured skeletal size (tarsus length) and body mass at days 5, 7, 10, and 15 posthatch in nestlings from two groups of nest boxes: control and heated (+1.6°C).
  4. Our results show that nestlings in heated nest boxes were 1.6% smaller in skeletal size at fledging than those in the cooler control nests, indicating lower growth rates in heated boxes, and that their weight was, in addition, 3.3% lower.
  5. These results suggest that even fairly small changes in temperature can influence phenotype and postfledging survival in cavity‐nesting birds. This has the potential to affect the population dynamics of these birds in the face of ongoing climatic change, as individuals of reduced size in colder winters may suffer from decreased fitness.
  相似文献   

3.
  1. Understanding the mechanisms underlying spatial variability of exploited fish is critical for the sustainable management of fish stocks. Empirical studies suggest that size‐selective fishing can elevate fish population spatial variability (i.e., more heterogeneous distribution) through age truncation, making the population less resilient to changing environment. However, species differ in how their spatial variability responds to age truncation and the underlying mechanisms remain unclear.
  2. We hypothesize that age‐specific habitat preference, together with environmental carrying capacity and landscape structure, determines the response of population spatial variability to fishing‐induced age truncation. To test these hypotheses, we design an individual‐based model of an age‐structured fish population on a two‐dimensional landscape under size‐selective fishing. Individual fish reproduces and survives, and moves between habitats according to age‐specific habitat preference and density‐dependent habitat selection.
  3. Population spatial variability elevates with increasing age truncation, and the response is stronger for populations with stronger age‐specific habitat preference. On a gradient landscape, reducing carrying capacity elevates the relative importance of density dependence in habitat selection, which weakens the response of spatial variability to age truncation for populations with strong age‐specific habitat preference. On a fragmented landscape, both populations with strong and weak age‐specific habitat preferences are restricted at local optimal habitats, and reducing carrying capacity weakens the responses of spatial variability to age truncation for both populations.
  4. Synthesis and applications. We demonstrate that to track and predict the changes in population spatial variability under exploitation, it is essential to consider the interactive effects of age‐specific habitat preference, carrying capacity, and landscape structure. To improve spatial management in fisheries, it is crucial to enhance empirical and theoretical developments in the methodology to quantify age‐specific habitat preference of marine fish, and to understand how climatic change influences carrying capacity and landscape continuity.
  相似文献   

4.
  1. With an increasing number of scientific articles published each year, there is a need to synthesize and obtain insights across ever‐growing volumes of literature. Here, we present pyResearchInsights, a novel open‐source automated content analysis package that can be used to analyze scientific abstracts within a natural language processing framework.
  2. The package collects abstracts from scientific repositories, identifies topics of research discussed in these abstracts, and presents interactive concept maps to visualize these research topics. To showcase the utilities of this package, we present two examples, specific to the field of ecology and conservation biology.
  3. First, we demonstrate the end‐to‐end functionality of the package by presenting topics of research discussed in 1,131 abstracts pertaining to birds of the Tropical Andes. Our results suggest that a large proportion of avian research in this biodiversity hotspot pertains to species distributions, climate change, and plant ecology.
  4. Second, we retrieved and analyzed 22,561 abstracts across eight journals in the field of conservation biology to identify twelve global topics of conservation research. Our analysis shows that conservation policy and landscape ecology are focal topics of research. We further examined how these conservation‐associated research topics varied across five biodiversity hotspots.
  5. Lastly, we compared the utilities of this package with existing tools that carry out automated content analysis, and we show that our open‐source package has wider functionality and provides end‐to‐end utilities that seldom exist across other tools.
  相似文献   

5.
  1. Community scientists have illustrated rapid declines of several aphidophagous lady beetle (Coccinellidae) species. These declines coincide with the establishment of alien coccinellids. We established the Buckeye Lady Beetle Blitz program to measure the seasonal occupancy of coccinellids within gardens across a wide range of landscape contexts. Following the Habitat Compression Hypothesis, we predicted that gardens within agricultural landscapes would be alien‐dominated, whereas captures of natives would be higher within landscapes encompassing a high concentration of natural habitat.
  2. Within the state of Ohio, USA, community scientists collected lady beetles for a 7‐day period across 4 years in June and August using yellow sticky card traps. All identifications were verified by professional scientists and beetles were classified by three traits: status (alien or native), mean body length, and primary diet. We compared the relative abundance and diversity of coccinellids seasonally and determined if the distribution of beetles by size, status, and diet was related to landscape features.
  3. Alien species dominated the aphidophagous fauna. Native aphidophagous coccinellid abundance was positively correlated with forest habitat while alien species were more common when gardens were embedded within agricultural landscapes. Urbanization was negatively associated with both aphidophagous alien and native coccinellids.
  4. Synthesis and Applications: Our census of native coccinellid species within residential gardens—a widespread and understudied habitat—was enabled by volunteers. These data will serve as an important baseline to track future changes within coccinellid communities within this region. We found that native coccinellid species richness and native aphidophagous coccinellid abundance in gardens were positively associated with forest habitat at a landscape scale of 2 km. However, our understanding of when and why (overwintering, summer foraging, or both) forest habitats are important remains unclear. Our findings highlight the need to understand how declining aphidophagous native species utilize forest habitats as a conservation priority.
  相似文献   

6.
  1. Forest ecosystems experience a myriad of natural and anthropogenic disturbances that shape ecological communities. Seedling emergence is a critical, preliminary stage in the recovery of forests post​ disturbance and is triggered by a series of abiotic and biotic changes. However, the long‐term influence of different disturbance histories on patterns of seedling emergence is poorly understood.
  2. Here, we address this research gap by using an 11‐year dataset gathered between 2009 and 2020 to quantify the influence of different histories of natural (wildfire) and anthropogenic (clearcut and postfire salvage logging) disturbances on emerging seedlings in early‐successional Mountain Ash forests in southeastern Australia. We also describe patterns of seedling emergence across older successional forests varying in stand age (stands that regenerated in <1900s, 1939, 1970–90, and 2007–11).
  3. Seedling emergence was highest in the first three years post disturbance. Stand age and disturbance history significantly influenced the composition and abundance of plant seedlings. Specifically, in salvage‐logged forests, plant seedlings were the most different from similarly aged forests with other disturbance histories. For instance, relative to clearcut and unlogged, burnt forests of the same age, salvage logging had the lowest overall richness, the lowest counts of Acacia seedlings, and an absence of common species including Acacia obliquinervia, Acacia frigescens, Cassinia arcuealta, Olearia argophylla, Pimelea axiflora, Polyscias sambucifolia, and Prosanthera melissifolia over the survey period.
  4. Synthesis: Our findings provide important new insights into the influence of different disturbance histories on regenerating forests and can help predict plant community responses to future disturbances, which may influence forest recovery under altered disturbance regimes.
  相似文献   

7.
  1. We investigated some aspects of hawkmoth community assembly at 13 elevations along a 200‐ to 2770‐m transect in the eastern Himalayas, a little studied biodiversity hot spot of global importance. We measured the morphological traits of body mass, wing loading, and wing aspect ratio of 3,301 free‐ranging individuals of 76 species without having to collect or even constrain them. We used these trait measurements and T‐statistic metrics to assess the strength of intracommunity (“internal") and extra‐community (“external”) filters which determine the composition of communities vis‐a‐vis the regional pool of species.
  2. The trait distribution of constituent species turned out to be nonrandom subsets of the community‐trait distribution, providing strong evidence for internal filtering in all elevational communities. The external filter metric was more ambiguous. However, the elevational dependence of many metrics including that of the internal filter provided evidence for external (i.e., environmental) filtering. On average, a species occupied as much as 50%–75% of the total community‐trait space, yet the T‐statistic metric for internal filter was sufficiently sensitive to detect a strong nonrandom structure in the trait distribution.
  3. We suggest that the change in T‐statistic metrics along the environmental gradient may provide more clues to the process of community assembly than previously envisaged. A large, smoothly varying and well‐sampled environmental span would make it easier to discern them. Developing T‐statistics for combined analysis of multiple traits will perhaps provide a more accurate picture of internal/filtering and niche complementarity. Moths are a hyperdiverse taxon and a very important component of many ecosystems. Our technique for accurately measuring body and wing dimensions of free‐ranging moths can generate trait database for a large number of individuals in a time‐ and resource‐efficient manner for a variety of community assembly studies using this important taxon.
  相似文献   

8.
  1. The development of encompassing general models of ecology is precluded by underrepresentation of certain taxa and systems. Models predicting context‐dependent outcomes of biotic interactions have been tested using plants and bacteria, but their applicability to higher taxa is largely unknown.
  2. We examined context dependency in a reproductive mutualism between two stream fish species: mound nest‐building bluehead chub Nocomis leptocephalus and mountain redbelly dace Chrosomus oreas, which often uses N. leptocephalus nests for spawning. We hypothesized that increased predator density and decreased substrate availability would increase the propensity of C. oreas to associate with N. leptocephalus and decrease reproductive success of both species.
  3. In a large‐scale in situ experiment, we manipulated egg predator density and presence of both symbionts (biotic context), and replicated the experiment in habitats containing high‐ and low‐quality spawning substrate (abiotic context).
  4. Contradictory to our first hypothesis, we observed that C. oreas did not spawn without its host. The interaction outcome switched from commensalistic to mutualistic with changing abiotic and biotic contexts, although the net outcome was mutualistic.
  5. The results of this study yielded novel insight into how context dependency operates in vertebrate mutualisms. Although the dilution effect provided by C. oreas positively influenced reproductive success of N. leptocephalus, it was not enough to overcome both egg predation and poor spawning habitat quality. Outcomes of the interaction may be ultimately determined by associate density. Studies of context dependency in vertebrate systems require detailed knowledge of species life‐history traits.
  相似文献   

9.
  1. Restoration ecology has historically focused on reconstructing communities of highly visible taxa while less visible taxa, such as invertebrates and microbes, are ignored. This is problematic as invertebrates and microbes make up the vast bulk of biodiversity and drive many key ecosystem processes, yet they are rarely actively reintroduced following restoration, potentially limiting ecosystem function and biodiversity in these areas.
  2. In this review, we discuss the current (limited) incorporation of invertebrates and microbes in restoration and rewilding projects. We argue that these groups should be actively rewilded during restoration to improve biodiversity, ecosystem function outcomes, and highlight how they can be used to greater effect in the future. For example, invertebrates and microbes are easily manipulated, meaning whole communities can potentially be rewilded through habitat transplants in a practice that we refer to as “whole‐of‐community” rewilding.
  3. We provide a framework for whole‐of‐community rewilding and describe empirical case studies as practical applications of this under‐researched restoration tool that land managers can use to improve restoration outcomes.
  4. We hope this new perspective on whole‐of‐community restoration will promote applied research into restoration that incorporates all biota, irrespective of size, while also enabling a better understanding of fundamental ecological theory, such as colonization and competition trade‐offs. This may be a necessary consideration as invertebrates that are important in providing ecosystem services are declining globally; targeting invertebrate communities during restoration may be crucial in stemming this decline.
  相似文献   

10.
  1. At the landscape level, intensification of agriculture, fragmentation, and destruction of natural habitats are major causes of biodiversity loss that can be mitigated at small spatial scales. However, the complex relationships between human activities, landscapes, and biodiversity are poorly known. Yet, this knowledge could help private stakeholders managing seminatural areas to play a positive role in biodiversity conservation.
  2. We investigated how water‐abstraction sites could sustain species diversity in vascular‐plant communities and two taxonomic groups of insect communities in a fragmented agricultural landscape.
  3. Landscape‐scale variables (connectivity indices and surrounding levels of herbicide use), as well as site‐specific variables (soil type for vascular plants, floral availability for Rhopalocera, and low herbaceous cover for Orthoptera), were correlated to structural and functional metrics of species community diversity for these taxonomic groups, measured on 35 industrial sites in the Ile‐de‐France region in 2018–2019.
  4. Rhopalocera and Orthoptera consisted essentially of species with a high degree of dispersal and low specialization, able to reach the habitat patches of the fragmented landscape of the study area. Sandy soil harbored more diverse vascular‐plant communities. Plant diversity was correlated to a greater abundance of Rhopalocera and a lower richness of Orthoptera.
  5. Increasing landscape connectivity was related to higher abundance of plants and Rhopalocera, and a higher evenness index for Orthoptera communities. Higher levels of herbicide use were related to a decrease in the biodiversity of plants and Rhopalocera abundance. High levels of herbicide favored high‐dispersal generalist plants, while high levels of connectivity favored low‐dispersal plants. Specialist Orthoptera species were associated with low herbaceous cover and connectivity.
  6. Water‐abstraction sites are valuable seminatural habitats for biodiversity. Changing intensive agricultural practices in surrounding areas would better contribute to conserving and restoring biodiversity on these sites.
  相似文献   

11.
  1. Heat waves cause mass mortality of animals, including humans, across the globe annually, which has drawn new attention to how animals cope with high air temperatures. Recent field research has explored behavioral responses to high air temperatures, which can influence reproductive success and mortality.
  2. Less well studied are the effects of high air temperatures on cognition, which may underlie behavioral changes. Specifically, it is poorly known if cognitive declines occur at high temperatures, and if cognitive and motor components of behavior are similarly affected.
  3. We tested how well zebra finches (Taeniopygia guttata castanotis), a model for cognition research, performed two learned foraging tasks (color association and detour‐reaching) at mild (22°C) and high (43 and 44°C) air temperatures that occur naturally in their range. We habituated birds to the trial conditions and temperatures on days preceding the test trials and at the trial temperature for 30 min immediately prior to each test trial. Trials lasted less than 10 min. At high air temperatures, zebra finches exhibited heat dissipation behaviors during most tasks, suggesting thermoregulatory challenge.
  4. Cognitive performance declined at high air temperatures in two of three measures: Color association was unaffected, but birds missed more food rewards, and did more unproductive behaviors. Motor performance declined at high temperatures on the color association task, including longer times to complete the task, move between food rewards, and process individual seeds. Performance declines varied among components of behavior and among individuals.
  5. We combined our behavioral data with existing climate data and predicted that in the austral summer of 2018–2019, zebra finches experienced air temperatures that caused cognitive and motor declines in our captive birds in 34% and 45% of their Australian range, respectively.
  6. This study provides novel experimental evidence that high air temperatures cause cognitive and motor performance decline in birds. Further, our results provide insights to how those declines might affect bird ecology and evolution. First, differences in declines among behavioral components may allow identification of behaviors that are most susceptible to decline in the wild. Second, variation in performance declines and heat dissipation behaviors among individuals suggests variability in heat tolerance, which could lead to differential fitness in the wild. Last, these results suggest that high air temperatures cause cognitive declines in the wild and that understanding cognition could help refine predictive models of population persistence.
  相似文献   

12.
  1. In social species, reproductive success and rates of dispersal vary among individuals resulting in spatially structured populations. Network analyses of familial relationships may provide insights on how these parameters influence population‐level demographic patterns. These methods, however, have rarely been applied to genetically derived pedigree data from wild populations.
  2. Here, we use parent–offspring relationships to construct familial networks from polygamous boreal woodland caribou (Rangifer tarandus caribou) in Saskatchewan, Canada, to inform recovery efforts. We collected samples from 933 individuals at 15 variable microsatellite loci along with caribou‐specific primers for sex identification. Using network measures, we assess the contribution of individual caribou to the population with several centrality measures and then determine which measures are best suited to inform on the population demographic structure. We investigate the centrality of individuals from eighteen different local areas, along with the entire population.
  3. We found substantial differences in centrality of individuals in different local areas, that in turn contributed differently to the full network, highlighting the importance of analyzing networks at different scales. The full network revealed that boreal caribou in Saskatchewan form a complex, interconnected familial network, as the removal of edges with high betweenness did not result in distinct subgroups. Alpha, betweenness, and eccentricity centrality were the most informative measures to characterize the population demographic structure and for spatially identifying areas of highest fitness levels and family cohesion across the range. We found varied levels of dispersal, fitness, and cohesion in family groups.
  4. Synthesis and applications: Our results demonstrate the value of different network measures in assessing genetically derived familial networks. The spatial application of the familial networks identified individuals presenting different fitness levels, short‐ and long‐distance dispersing ability across the range in support of population monitoring and recovery efforts.
  相似文献   

13.
  1. Studies on the effects of human‐driven forest disturbance usually focus on either biodiversity or carbon dynamics but much less is known about ecosystem processes that span different trophic levels. Herbivory is a fundamental ecological process for ecosystem functioning, but it remains poorly quantified in human‐modified tropical rainforests.
  2. Here, we present the results of the largest study to date on the impacts of human disturbances on herbivory. We quantified the incidence (percentage of leaves affected) and severity (the percentage of leaf area lost) of canopy insect herbivory caused by chewers, miners, and gall makers in leaves from 1,076 trees distributed across 20 undisturbed and human‐modified forest plots in the Amazon.
  3. We found that chewers dominated herbivory incidence, yet were not a good predictor of the other forms of herbivory at either the stem or plot level. Chewing severity was higher in both logged and logged‐and‐burned primary forests when compared to undisturbed forests. We found no difference in herbivory severity between undisturbed primary forests and secondary forests. Despite evidence at the stem level, neither plot‐level incidence nor severity of the three forms of herbivory responded to disturbance.
  4. Synthesis. Our large‐scale study of canopy herbivory confirms that chewers dominate the herbivory signal in tropical forests, but that their influence on leaf area lost cannot predict the incidence or severity of other forms. We found only limited evidence suggesting that human disturbance affects the severity of leaf herbivory, with higher values in logged and logged‐and‐burned forests than undisturbed and secondary forests. Additionally, we found no effect of human disturbance on the incidence of leaf herbivory.
  相似文献   

14.
  1. Many insects that live in temperate zones spend the cold season in a state of dormancy, referred to as diapause. As the insect must rely on resources that were gathered before entering diapause, keeping a low metabolic rate is of utmost importance. Organs that are metabolically expensive to maintain, such as the brain, can therefore become a liability to survival if they are too large.
  2. Insects that go through diapause as adults generally do so before entering the season of reproduction. This order of events introduces a conflict between maintaining low metabolism during dormancy and emerging afterward with highly developed sensory systems that improve fitness during the mating season.
  3. We investigated the timing of when investments into the olfactory system are made by measuring the volumes of primary and secondary olfactory neuropils in the brain as they fluctuate in size throughout the extended diapause life‐period of adult Polygonia c‐album butterflies.
  4. Relative volumes of both olfactory neuropils increase significantly during early adult development, indicating the importance of olfaction to this species, but still remain considerably smaller than those of nondiapausing conspecifics. However, despite butterflies being kept under the same conditions as before the dormancy, their olfactory neuropil volumes decreased significantly during the postdormancy period.
  5. The opposing directions of change in relative neuropil volumes before and after diapause dormancy indicate that the investment strategies governing structural plasticity during the two life stages could be functionally distinct. As butterflies were kept in stimulus‐poor conditions, we find it likely that investments into these brain regions rely on experience‐expectant processes before diapause and experience‐dependent processes after diapause conditions are broken.
  6. As the shift in investment strategies coincides with a hard shift from premating season to mating season, we argue that these developmental characteristics could be adaptations that mitigate the trade‐off between dormancy survival and reproductive fitness.
  相似文献   

15.
  1. White‐nose syndrome (WNS) has caused the death of millions of bats, but the impacts have been more difficult to identify in western North America. Understanding how WNS, or other threats, impacts western bats may require monitoring other roosts, such as maternity roosts and night roosts, where bats aggregate in large numbers.
  2. Little brown bats (Myotis lucifugus) are experiencing some of the greatest declines from WNS. Estimating survival and understanding population dynamics can provide valuable data for assessing population declines and informing conservation efforts.
  3. We conducted a 5‐year mark–recapture study of two M. lucifugus roosts in Colorado. We used the robust design model to estimate apparent survival, fidelity, and abundance to understand population dynamics, and environmental covariates to understand how summer and winter weather conditions impact adult female survival. We compared the fidelity and capture probability of M. lucifugus between colonies to understand how bats use such roosts.
  4. Overwinter survival increased with the number of days with temperatures below freezing (β > 0.100, SE = 0.003) and decreased with the number of days with snow cover (β < −0.40, SE < 0.13). Adult female fidelity was higher at one maternity roost than the other. Overwinter and oversummer adult female survival was high (>0.90), and based on survival estimates and fungal‐swabbing results, we believe these populations have yet to experience WNS.
  5. Recapture of M. lucifugus using antennas that continuously read passive integrated transponder tags allows rigorous estimation of bat population parameters that can elucidate trends in abundance and changes in survival. Monitoring populations at summer roosts can provide unique population ecology data that monitoring hibernacula alone may not. Because few adult males are captured at maternity colonies, and juvenile males have low fidelity, additional effort should focus on understanding male M. lucifugus population dynamics.
  相似文献   

16.
17.
  1. Many policies and studies globally have highlighted the pivotal role of wetland ecosystems regarding wetland biota and their ecological status. With the strengthening of wetland ecosystem management legislation and policy, wetland restoration should also consider increasing habitat diversity to improve biota. We explore whether the construction of artificial ecological islands can increase the diversity of and macroinvertebrates before assessing the effects of actively constructing islands via human intervention on wetland protection.
  2. We discuss changes in macroinvertebrate diversity (i) with and without islands, (ii) at different water‐level gradients surrounding the islands, (ⅲ) on different island substrates, and (ⅳ) at different time scales. We used ANOVA, ANOSIM, and cluster analysis to test the differences.
  3. The macroinvertebrate communities had spatially heterogeneous distributions which changes over time due to both natural and anthropogenic stresses. The establishment of islands significantly increased the community composition and biodiversity of the macroinvertebrate. Water depth and substrate affect community composition of macrozoobenthos. The abundance and diversity of macroinvertebrates can influence the biodiversity of their predators (fish and waterbirds). Potentially, the construction of islands could provide some cobenefits for the conservation of wetland fauna.
Synthesis and applications. Establishing artificial ecological islands in broad open‐water areas and increasing water‐level gradient and substrate diversity can increase microhabitat availability and habitat heterogeneity. These changes can adapt to different ecological niches of aquatic organisms, increase biodiversity, and have a positive effect on the ecological restoration of inland freshwater marshes and wetlands.  相似文献   

18.
19.
With rapid global change, the frequency and severity of extreme disturbance events are increasing worldwide. The ability of animal populations to survive these stochastic events depends on how individual animals respond to their altered environments, yet our understanding of the immediate and short‐term behavioral responses of animals to acute disturbances remains poor. We focused on animal behavioral responses to the environmental disturbance created by megafire. Specifically, we explored the effects of the 2018 Mendocino Complex Fire in northern California, USA, on the behavior and body condition of black‐tailed deer (Odocoileus hemionus columbianus). We predicted that deer would be displaced by the disturbance or experience high mortality post‐fire if they stayed in the burn area. We used data from GPS collars on 18 individual deer to quantify patterns of home range use, movement, and habitat selection before and after the fire. We assessed changes in body condition using images from a camera trap grid. The fire burned through half of the study area, facilitating a comparison between deer in burned and unburned areas. Despite a dramatic reduction in vegetation in burned areas, deer showed high site fidelity to pre‐fire home ranges, returning within hours of the fire. However, mean home range size doubled after the fire and corresponded to increased daily activity in a severely resource‐depleted environment. Within their home ranges, deer also selected strongly for patches of surviving vegetation and woodland habitat, as these areas provided forage and cover in an otherwise desolate landscape. Deer body condition significantly decreased after the fire, likely as a result of a reduction in forage within their home ranges, but all collared deer survived for the duration of the study. Understanding the ways in which large mammals respond to disturbances such as wildfire is increasingly important as the extent and severity of such events increases across the world. While many animals are adapted to disturbance regimes, species that exhibit high site fidelity or otherwise fixed behavioral strategies may struggle to cope with increased climate instability and associated extreme disturbance events.  相似文献   

20.
Protecting biodiversity requires an understanding of how anthropogenic changes impact the genetic processes associated with extinction risk. Studies of the genetic changes due to anthropogenic fragmentation have revealed conflicting results. This is likely due to the difficulty in isolating habitat loss and fragmentation, which can have opposing impacts on genetic parameters. The well‐studied orchid, Platanthera leucophaea, provides a rich dataset to address this issue, allowing us to examine range‐wide genetic changes. Midwestern and Northeastern United States. We sampled 35 populations of P. leucophaea that spanned the species’ range and varied in patch composition, degree of patch isolation, and population size. From these populations we measured genetic parameters associated with increased extinction risk. Using this combined dataset, we modeled landscape variables and population metrics against genetic parameters to determine the best predictors of increased extinction risk. All genetic parameters were strongly associated with population size, while development and patch isolation showed an association with genetic diversity and genetic structure. Genetic diversity was lowest in populations with small census sizes, greater urbanization pressures (habitat loss), and small patch area. All populations showed moderate levels of inbreeding, regardless of size. Contrary to expectation, we found that critically small populations had negative inbreeding values, indicating non‐random mating not typically observed in wild populations, which we attribute to selection for less inbred individuals. The once widespread orchid, Platanthera leucophaea, has suffered drastic declines and extant populations show changes in the genetic parameters associated with increased extinction risk, especially smaller populations. Due to the important correlation with risk and habitat loss, we advocate continued monitoring of population sizes by resource managers, while the critically small populations may need additional management to reverse genetic declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号