首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large conductance calcium activated potassium channels (BKCa) are fundamental in the control of cellular excitability. Thus, compounds that activate BKCa channels could provide potential therapies in the treatment of pathologies of the cardiovascular and central nervous system. A series of novel N-arylbenzamide compounds, and the reference compound NS1619, were evaluated for BKCa channel opener properties in Human Embryonic Kidney (HEK293) cells expressing the human BKCa channel α-subunit alone or α + β1-subunit complex.Channel activity was determined using a non-radioactive Rb+ efflux assay to construct concentration effect curves for each compound. All N-arylbenzamide compounds and NS1619 evoked significant (p <0.05) concentration related increases in Rb+ efflux both in cells expressing α-subunit alone or α + β1-subunits. Co-expression of the β1-subunit modified the Rb+ efflux responses, relative to that obtained in cells expressing the α-subunit alone, for most of the N-arylbenzamide compounds, in contrast to NS1619. The EC40 values of NS1619, BKMe1 and BKOEt1 were not significantly affected by the co-expression of the BKCa channel α + β1-subunits. In contrast, 5 other N-arylbenzamides (BKPr2, BKPr3, BKPr4, BKH1 and BKVV) showed a significant (p <0.05) 2- to 10-fold increase in EC40 values when tested on the BKCa α + β1-subunit expressing cells compared to BKCa α-subunit expressing cells. Further, the Emax values for BKPr4, BKVV and BKH1 were lower in the BKCa channel α + β1-subunit expressing cells.In conclusion, the N-arylbenzamides studied, like NS1619, were able to activate BKCa channels formed of the α-subunit only. The co-expression of the β1-subunit, however, modified the ability of certain compounds to active the channel leading to differentiated pharmacodynamic profiles.  相似文献   

2.
To identify new potent multidrug resistance modulators, we have synthesized a series of novel thieno[2,3-b]pyridines and furo[2,3-b]pyridines, and examined their stucture–activity relationships. All synthesized compounds were tested to determine BCRP1, P-gp, and MRP1 inhibitor activity, and most potent MDR modulators were also screened for their toxicity, cytotoxicity and Ca2+ channel antagonist activity. Among these compounds, thieno[2,3-b]pyridine (6r) was found to exhibit a potent P-gp inhibitory action with EC50 = 0.3 ± 0.2 μM, MRP1 inhibitory action with EC50 = 1.1 ± 0.1 μM and BCRP1 inhibitory action with EC50 = 0.2 ± 0.05 μM and may represent suitable candidate for further pharmacological studies.  相似文献   

3.
Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca2 + signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known. Transient receptor potential channels (TRPCs) regulate a variety of intracellular processes including store-operated Ca2 + entry (SOCE; including in ASM) and secretion of factors such as cytokines. In human ASM, we tested the hypothesis that TRPC3 regulates BDNF secretion. At baseline, intracellular BDNF was present, and BDNF secretion was detectable by enzyme linked immunosorbent assay (ELISA) of cell supernatants or by real-time fluorescence imaging of cells transfected with GFP–BDNF vector. Exposure to the pro-inflammatory cytokine tumor necrosis factor-alpha (TNFα) (20 ng/ml, 48 h) or a mixture of allergens (ovalbumin, house dust mite, Alternaria, and Aspergillus extracts) significantly enhanced BDNF secretion and increased TRPC3 expression. TRPC3 knockdown (siRNA or inhibitor Pyr3; 10 μM) blunted BDNF secretion, and prevented inflammation effects. Chelation of extracellular Ca2 + (EGTA; 1 mM) or intracellular Ca2 + (BAPTA; 5 μM) significantly reduced secreted BDNF, as did the knockdown of SOCE proteins STIM1 and Orai1 or plasma membrane caveolin-1. Functionally, secreted BDNF had autocrine effects suggested by phosphorylation of high-affinity tropomyosin-related kinase TrkB receptor, prevented by chelating extracellular BDNF with chimeric TrkB-Fc. These data emphasize the role of TRPC3 and Ca2 + influx in the regulation of BDNF secretion by human ASM and the enhancing effects of inflammation. Given the BDNF effects on Ca2 + and cell proliferation, BDNF secretion may contribute to altered airway structure and function in diseases such as asthma.  相似文献   

4.
AimsThis study was designed to examine the mechanism of relaxation induced by CIJ-3-2F, a benzyl-furoquinoline antiarrhythmic agent, in rat thoracic aorta at the tissue and cellular levels.Main methodsIsometric tension of rat aortic ring was measured in response to drugs. Ionic channel activities in freshly dissociated aortic vascular smooth muscle cells (VSMCs) were investigated using a whole-cell patch-clamp technique.Key findingsCIJ-3-2F relaxed both phenylephrine (PE) and high KCl (60 mM)-induced contractions with respective pEC50 (-log EC50) values of 6.91 ± 0.07 and 6.32 ± 0.06. Removal of endothelium or pretreatment with nitric oxide (NO)-pathway inhibitors Nω-nitro-l-arginine methyl ester (L-NAME), NG-monomethyl-l-arginine (L-NMMA), N5-(1-iminoethyl)-l-ornithine (L-NIO), hemoglobin, methylene blue or 1H-[1,2,4]oxadiazolo[4,2-α]quinoxalin-1-one (ODQ) reduced the relaxant effect of CIJ-3-2F. Relaxation to CIJ-3-2F was also attenuated by K+ channel blockers tetraethylammonium (TEA) or 4-aminopyridine (4-AP), but not by charybdotoxin plus apamin, iberiotoxin, glibenclamide, or BaCl2. CIJ-3-2F non-competitively antagonized the contractions induced by PE, Ca2+, and Bay K8644 in endothelium-denuded rings. In addition, CIJ-3-2F inhibited both the phasic and tonic contractions induced by PE but did not affect the transient contraction induced by caffeine. CIJ-3-2F reduced the Ba2+ inward current through L-type Ca2+ channel (IC50 = 4.1 μM) and enhanced the voltage-dependent K+ (Kv) current in aortic VSMCs.SignificanceThese results suggest that CIJ-3-2F induced both endothelium-dependent and -independent vasorelaxation; the former is likely mediated by the NO/cGMP pathway whereas the latter is probably mediated through inhibition of Ca2+ influx or inositol 1,4,5-triphosphate (IP3)-sensitive intracellular Ca2+ release, or through activation of Kv channels.  相似文献   

5.
Physiologically relevant concentrations of [Arg8]-vasopressin (AVP) induce repetitive action potential firing and Ca2+ spiking responses in the A7r5 rat aortic smooth muscle cell line. These responses may be triggered by suppression of KCNQ potassium currents and/or activation of non-selective cation currents. Here we examine the relative contributions of KCNQ5 channels and TRPC6 non-selective cation channels to AVP-stimulated Ca2+ spiking using patch clamp electrophysiology and fura-2 fluorescence measurements in A7r5 cells. KCNQ5 or TRPC6 channel expression levels were suppressed by short hairpin RNA constructs. KCNQ5 knockdown resulted in more positive resting membrane potentials and induced spontaneous action potential firing and Ca2+ spiking. However physiological concentrations of AVP induced additional depolarization and increased Ca2+ spike frequency in KCNQ5 knockdown cells. AVP activated a non-selective cation current that was reduced by TRPC shRNA treatment or removal of external Na+. Neither resting membrane potential nor the AVP-induced depolarization was altered by knockdown of TRPC6 channel expression. However, both TRPC6 shRNA and removal of external Na+ delayed the onset of Ca2+ spiking induced by 25 pM AVP. These results suggest that suppression of KCNQ5 currents alone is sufficient to excite A7r5 cells, but AVP-induced activation of TRPC6 contributes to the stimulation of Ca2+ spiking.  相似文献   

6.
We demonstrated a role for the Mg2 + transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg2 + and pro-inflammatory signaling by aldosterone. Kidney cells (HEK-293) expressing wild-type human TRPM7 (WThTRPM7) or constructs in which the α-kinase domain was deleted (ΔKinase) or rendered inactive with a point mutation in the ATP binding site of the α-kinase domain (K1648R) were studied. Aldosterone rapidly increased [Mg2 +]i and stimulated NADPH oxidase-derived generation of reactive oxygen species (ROS) in WT hTRPM7 and TRPM7 kinase dead mutant cells. Translocation of annexin-1 and calpain-II and spectrin cleavage (calpain target) were increased by aldosterone in WT hTRPM7 cells but not in α-kinase-deficient cells. Aldosterone stimulated phosphorylation of MAP kinases and increased expression of pro-inflammatory mediators ICAM-1, Cox-2 and PAI-1 in Δkinase and K1648R cells, effects that were inhibited by eplerenone (mineralocorticoid receptor (MR) blocker). 2-APB, a TRPM7 channel inhibitor, abrogated aldosterone-induced Mg2 + responses in WT hTRPM7 and mutant cells. In 2-APB-treated ΔKinase and K1648R cells, aldosterone-stimulated inflammatory responses were unchanged. These data indicate that aldosterone stimulates Mg2 + influx and ROS production in a TRPM7-sensitive, kinase-insensitive manner, whereas activation of annexin-1 requires the TRPM7 kinase domain. Moreover TRPM7 α-kinase modulates inflammatory signaling by aldosterone in a TRPM7 channel/Mg2 +-independent manner. Our findings identify novel mechanisms for non-genomic actions of aldosterone involving differential signaling through MR-activated TRPM7 channel and α-kinase.  相似文献   

7.
Research has shown that mechanical stress stimulation can cause airway remodeling. We investigate the effects of mechanical stretch on the expression of the airway remodeling-associated factors interleukin-13 (IL-13) and matrix metalloprotein-9 (MMP-9) and signaling pathways in human bronchial epithelioid (16HBE) cells under mechanical stretch. A Flexcell FX-4000 Tension System with a flexible substrate was applied to stretch 16HBE cells at a 15% elongation amplitude and 1 Hz frequency, with stretching for 0.5 h, 1 h, 1.5 h and 2 h. The experimental group with higher IL-13, MMP-9, and TRPC1 expression and higher Ca2+ levels was selected for performing intervention experiment. These cells were pretreated with the transient receptor potential canonical 1 (TRPC1) channel antagonist SKF96365 and TRPC1-specific siRNA, and then mechanical stretch was applied. Our results provided evidences that mechanical pressure significantly increased IL-13, MMP-9, and TRPC1 protein and mRNA expression levels and intracellular Ca2+ fluorescence intensity at 4 time points compared with the control group. The peak IL-13, MMP-9, and TRPC1 expression levels were observed at 0.5 h after exposure to mechanical pressure. IL-13 and MMP-9 expression levels and Ca2+ fluorescence intensity in the stretch+SKF96365 group and in the stretch+TRPC1 siRNA group were significantly lower than those were in the mechanical stretch group. By incubating the cells with the intracellular calcium chelator BAPTA-AM, the expression of IL-13 and MMP9 was significantly decreased, and the expression level of TRPC1 remained unchanged. These observations suggest that mechanical stretch may induce an influx of Ca2+ and up-regulation of IL-13 and MMP-9 expression in 16HBE cells via activation of TRPC1.  相似文献   

8.
Gq/11-coupled muscarinic acetylcholine receptors (mAChRs) belonging to M1, M3 and M5 subtypes have been shown to activate the metabolic sensor AMP-activated protein kinase (AMPK) through Ca2 +/calmodulin-dependent protein kinase kinase-β (CaMKKβ)-mediated phosphorylation at Thr172. However, the source of Ca2 + required for this response has not been yet elucidated. Here, we investigated the involvement of store-operated Ca2 + entry (SOCE) in AMPK activation by pharmacologically defined M3 mAChRs in human SH-SY5Y neuroblastoma cells. In Ca2 +-free medium the cholinergic agonist carbachol (CCh) caused a transient increase of phospho-Thr172 AMPK that rapidly ceased within 2 min. Conversely, in the presence of extracellular Ca2 + CCh-induced AMPK phosphorylation lasted for at least 180 min. The SOCE modulator 2-aminoethoxydiphephenyl borate (2-APB), at a concentration (50 μM) that suppressed CCh-induced intracellular Ca2 + ([Ca2 +]i) plateau, inhibited CCh-induced AMPK phosphorylation. CCh triggered the activation of the endoplasmic reticulum Ca2 + sensor stromal interaction molecule (STIM) 1, as indicated by redistribution of STIM1 immunofluorescence into puncta, and promoted the association of STIM1 with the SOCE channel component Orai1. Cell depletion of STIM1 by siRNA treatment reduced both CCh-induced [Ca2 +]i plateau and AMPK activation. M3 mAChRs increased glucose uptake and this response required extracellular Ca2 + and was inhibited by 2-APB, STIM1 knockdown, CaMKKβ and AMPK inhibitors, and adenovirus infection with dominant negative AMPK. Thus, the study provides evidence that SOCE is required for sustained activation of AMPK and stimulation of downstream glucose uptake by M3 mAChRs and suggests that SOCE is a critical process connecting M3 mAChRs to the control of neuronal energy metabolism.  相似文献   

9.
10.
STIM1 acts as an endoplasmic reticulum Ca2 + sensor that communicates the filling state of the intracellular stores to the store-operated channels. In addition, STIM1 is expressed in the plasma membrane, with the Ca2 + binding EF-hand motif facing the extracellular medium; however, its role sensing extracellular Ca2 + concentrations in store-operated Ca2 + entry (SOCE), as well as the underlying mechanism remains unclear. Here we report that divalent cation entry stimulated by thapsigargin (TG) is attenuated by extracellular Ca2 + in a concentration-dependent manner. Expression of the Ca2 +-binding defective STIM1(D76A) mutant did not alter the surface expression of STIM1 but abolishes the regulation of divalent cation entry by extracellular Ca2 +. Orai1 and TRPC1 have been shown to play a major role in SOCE. Expression of the STIM1(D76A) mutant did not alter Orai1 phosphoserine content. TRPC1 silencing significantly attenuated TG-induced Mn2 + entry. Expression of the STIM1(K684,685E) mutant impaired the association of plasma membrane STIM1 with TRPC1, as well as the regulation of TG-induced divalent cation entry by extracellular Ca2 +, which suggests that TRPC1 might be involved in the regulation of divalent cation entry by extracellular Ca2 + mediated by plasma membrane-resident STIM1. Expression of the STIM1(D76A) or STIM1(K684,685E) mutants reduced store-operated divalent cation entry and resulted in loss of dependence on the extracellular Ca2 + concentration, providing evidence for a functional role of plasma membrane-resident STIM1 in the regulation of store-operated divalent cation entry, which at least involves the EF-hand motif and the C-terminal polybasic lysine-rich domain.  相似文献   

11.
TRPV5 and TRPV6 channels are expressed in distal renal tubules and play important roles in the transcellular Ca2 + reabsorption in kidney. They are regulated by multiple intracellular factors including protein kinases A and C, membrane phospholipid PIP2, protons, and divalent ions Ca2 + and Mg2 +. Here, we report that fluid flow that generates shear force within the physiological range of distal tubular fluid flow activated TRPV5 and TRPV6 channels expressed in HEK cells. Flow-induced activation of channel activity was reversible and did not desensitize over 2 min. Fluid flow stimulated TRPV5 and 6-mediated Ca2 + entry and increased intracellular Ca2 + concentration. N-glycosylation-deficient TRPV5 channel was relatively insensitive to fluid flow. In cells coexpressing TRPV5 (or TRPV6) and Slo1-encoded maxi-K channels, fluid flow induced membrane hyperpolarization, which could be prevented by the maxi-K blocker iberiotoxin or TRPV5 and 6 blocker La3 +. In contrast, fluid flow did not cause membrane hyperpolarization in cells coexpressing ROMK1 and TRPV5 or 6 channel. These results reveal a new mechanism for the regulation of TRPV5 and TRPV6 channels. Activation of TRPV5 and TRPV6 by fluid flow may play a role in the regulation of flow-stimulated K+ secretion via maxi-K channels in distal renal tubules and in the mechanism of pathogenesis of thiazide-induced hypocalciuria.  相似文献   

12.
This Letter describes the further chemical optimization of the M5 PAM MLPCN probes ML129 and ML172. A multi-dimensional iterative parallel synthesis effort quickly explored isatin replacements and a number of southern heterobiaryl variations with no improvement over ML129 and ML172. An HTS campaign identified several weak M5 PAMs (M5 EC50 >10 μM) with a structurally related isatin core that possessed a southern phenethyl ether linkage. While SAR within the HTS series was very shallow and unable to be optimized, grafting the phenethyl ether linkage onto the ML129/ML172 cores led to the first sub-micromolar M5 PAM, ML326 (VU0467903), (human and rat M5 EC50s of 409 nM and 500 nM, respectively) with excellent mAChR selectivity (M1–M4 EC50s >30 μM) and a robust 20-fold leftward shift of the ACh CRC.  相似文献   

13.
In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29 ± 0.009 Hz (n = 43) and an amplitude of 14.6 ± 1.25 mg (n = 29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5 mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30–50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2+ channels and Ca2+ release from RyRs play an essential role in pacing SRCs and that Ca2+ release from IP3Rs may play a role in modulating the amplitude of SRCs, probably via activation of PLC.  相似文献   

14.
《Cellular signalling》2014,26(12):2773-2781
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults with median survival time of 14.6 months. A small fraction of cancer stem cells (CSC) initiate and maintain tumors thus driving glioma tumorigenesis and being responsible for resistance to classical chemo- and radio-therapies. It is desirable to identify signaling pathways related to CSC to develop novel therapies to selectively target them. Transient receptor potential cation channel, subfamily M, member 7, also known as TRPM7 is a ubiquitous, Ca2 + and Mg2 + permeable ion channels that are special in being both an ion channel and a serine/threonine kinase. In studies of glioma cells silenced for TRPM7, we demonstrated that Notch (Notch1, JAG1, Hey2, and Survivin) and STAT3 pathways are down regulated in glioma cells grown in monolayer. Furthermore, phospho-STAT3, Notch target genes and CSC markers (ALDH1 and CD133) were significantly higher in spheroid glioma CSCs when compared with monolayer cultures. The results further show that tyrosine-phosphorylated STAT3 binds and activates the ALDH1 promoters in glioma cells. We found that TRMP7-induced upregulation of ALDH1 expression is associated with increases in ALDH1 activity and is detectable in stem-like cells when expanded as spheroid CSCs. Finally, TRPM7 promotes proliferation, migration and invasion of glioma cells. These demonstrate that TRPM7 activates JAK2/STAT3 and/or Notch signaling pathways and leads to increased cell proliferation and migration. These findings for the first time demonstrates that TRPM7 (1) activates a previously unrecognized STAT3  ALDH1 pathway, and (2) promotes the induction of ALDH1 activity in glioma cells.  相似文献   

15.
Homer1 protein is an important scaffold protein at postsynaptic density and has been demonstrated to play a central role in calcium signaling in the central nervous system. The aim of this study was to investigate the effects of Homer1 knockdown on MPP+ induced neuronal injury in cultured dopamine (DA) neurons. We found that down-regulating Homer1 expression with specific small interfering RNA (siRNA) significantly suppressed LDH release, reduced Propidium iodide (PI) or Hoechst staining, increased the number of tyrosine hydroxylase (TH) positive cells and DA uptake, and attenuated apoptotic and necrotic cell death after MPP+ injury. Homer1 knockdown decreased intracellular reactive oxygen species (ROS) generation through inhibition of intracellular calcium overload, but did not affect the endogenous antioxidant enzyme activities. Calcium imaging was used to examine the changes of intracellular Ca2 + concentration ([Ca2 +]cyt) and Ca2 + in endoplasmic reticulum (ER) ([Ca2 +]ER), and the results showed that Homer1 siRNA transfection attenuated ER Ca2 + release up to 120 min after MPP+ injury. Furthermore, decrease of [Ca2 +]cyt induced by Homer1 knockdown in MPP+ treated neurons was further enhanced by NMDA receptor antagonists MK-801 and AP-5, but not canonical transient receptor potential (TRPC) channel antagonist SKF-96365. l-type calcium antagonist isradipine but not nimodipine further inhibited intracellular calcium overload after MPP+ insult in Homer1 down-regulated neurons. These results suggest that Homer1 knockdown has protective effects against neuronal injury in in vitro PD model by reducing calcium overload mediated ROS generation, and this protection may be dependent at least in part on the regulatory effects on the function of calcium channels in both plasma membrane and ER.  相似文献   

16.
The effect of water-soluble pristine C60 fullerene nanoparticles (C60NPs) on receptor-operated cation channels formed by TRPC4/C6 proteins in ileal smooth muscle cells was investigated for the first time. Activation of these channels subsequent to acetylcholine binding to the expressed in these cells M2 and M3 muscarinic receptors represents the key event in the parasympathetic control of gastrointestinal smooth muscle motility and cholinergic excitation-contraction coupling. Experiments were performed on single collagenase-dispersed mouse ileal myocytes using patch-clamp techniques with symmetrical 125 mM Cs+ solutions and [Ca2 +]i ‘clamped’ at 100 nM in order to isolate the muscarinic cation current (mICAT). The current was induced by intracellular infusion of 200 μM GTPγS, which activates G-proteins directly, i.e. bypassing the muscarinic receptors. C60NPs applied at 10 6 M at peak response to activation of G-proteins caused mICAT inhibition by 47.0 ± 3.5% (n = 9). The inhibition developed rather slowly, with the time constant of 119 ± 16 s, was voltage-independent and irreversible. Thus, C60NPs are unlikely to cause any direct block of TRPC4/C6 channels; rather, they may accumulate in the membrane and disrupt G-protein signalling leading to mICAT generation. C60NPs may represent a novel class of biocompatible molecules for the treatment of disorders associated with enhanced gastrointestinal motility.  相似文献   

17.
TRPA1 is a non-selective Ca2 + permeable channel located in the plasma membrane that functions as a cellular sensor detecting mechanical, chemical and thermal stimuli, being a component of neuronal, epithelial, blood and smooth muscle tissues. TRPA1 has been shown to influence a broad range of physiological processes that involve Ca2 +-dependent signaling pathways. Here we report that TRPA1 is expressed in MEG01 but not in platelets at the protein level. MEG01 cells maturation induced by PMA results in attenuation of TRPA1 protein expression and enhances thapsigargin-evoked Ca2 + entry without altering the release of Ca2 + from intracellular stores. Inhibition of TRPA1 by HC-030031 results in enhancement of both thrombin- and thapsigargin-stimulated Ca2 + entry. Co-immunoprecipitation experiments revealed that TRPA1 associates with STIM1, as well as Orai1, TRPC1 and TRPC6. Downregulation of TRPA1 expression by MEG01 maturation, as well as pharmacological inhibition of TRPA1 by HC-030031, results in enhancement of the association between STIM1 and Orai1. Altogether, these findings provide evidence for a new and interesting function of TRPA1 in cellular function associated to the regulation of agonist-induced Ca2 + entry by the modulation of STIM1/Orai1 interaction.  相似文献   

18.
《Cell calcium》2010,47(5-6):347-355
TPEN (N,N,N′,N′-tetrakis(2-pyridylmethyl)-ethylenediamine) is a membrane-permeable heavy-metal ion chelator with a dissociation constant for Ca2+ comparable to the Ca2+ concentration ([Ca2+]) within the intracellular Ca2+ stores. It has been used as modulator of intracellular heavy metals and of free intraluminal [Ca2+], without influencing the cytosolic [Ca2+] that falls in the nanomolar range. In our previous studies, we gave evidence that TPEN modifies the Ca2+ homeostasis of striated muscle independent of this buffering ability. Here we describe the direct interaction of TPEN with the ryanodine receptor (RyR) Ca2+ release channel and the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA). In lipid bilayers, at negative potentials and low [Ca2+], TPEN increased the open probability of RyR, while at positive potentials it inhibited channel activity. On permeabilized skeletal muscle fibers of the frog, but not of the rat, 50 μM TPEN increased the number of spontaneous Ca2+ sparks and induced propagating events with a velocity of 273 ± 7 μm/s. Determining the hydrolytic activity of the SR revealed that TPEN inhibits the SERCA pump, with an IC50 = 692 ± 62 μM and a Hill coefficient of 0.88 ± 0.10. These findings provide experimental evidence that TPEN directly modifies both the release of Ca2+ from and its reuptake into the SR.  相似文献   

19.
Mutations in the cation channel TRPC6 result in a renal-specific phenotype of familial nephrotic syndrome, affecting intracellular calcium ([Ca2+]i) signalling in the glomerular podocyte. Tools to study native TRPC6 activity are scarce, although there has been recent success with flufenamic acid (FFA). We confirm the specificity of FFA for TRPC6 both in an artificial expression system and in a human conditionally immortalised podocyte cell line (ciPod).Cells were loaded with fura-2AM and changes in intracellular calcium ([Ca2+]i) were calculated. 200 μM FFA induced an increase in [Ca2+]i in HEK293 cells with native TRPC6 expression, which was enhanced by overexpression of TRPC6 and completely blocked in the absence of extracellular calcium. Expressed TRPC7 did not significantly affect the response to FFA whereas expressed TRPC3 reduced it. FFA also induced an increase ciPod in [Ca2+]i, which was inhibited using SKF96365 and 2-APB, but not indomethacin. In ciPod, adenovirus (Ad-v) wild type (WT) TRPC6 increased [Ca2+]i activity to FFA compared to native TRPC6, whereas activity was significantly reduced with Ad-v dominant negative (DN) TRPC6. The niflumic acid (NFA) induced increase in [Ca2+]i in ciPod was not affected by Ad-v TRPC6 DN, and in HEK293 cells was not affected by WT TRPC6.In conclusion, FFA activates TRPC6 [Ca2+]i signalling in both ciPod and HEK293 cells independently of TRPC3 and TRPC7, and independently of properties of the fenamate family.  相似文献   

20.
A versatile synthesis of novel 5-hydroxylaminoisoxazoles bearing adamantane moieties has been accomplished using the heterocyclization reactions of readily available unsaturated esters by the treatment with tetranitromethane in the presence of triethylamine and subsequent reduction of resulting 5-nitroisoxazoles by SnCl2 with the participation of THF. A number of obtained isoxazole derivatives were evaluated for their antioxidative activity, inhibition of lipoxygenases and impact on the rat liver mitochondria. The majority of tested compounds demonstrated moderate antiradical activity in DPPH test (up to EC50 16 μM). The same compounds strongly inhibited soybean lipoxygenase (up to IC50 0.4 μM) and Fe2+- and Fe3+-induced lipid peroxidation (LP) of rat brain cortex homogenate (up to IC50 0.3 μM). All tested isoxazole derivatives promoted the phosphorylating respiratory activity simultaneously with maximal stimulated respiratory activity of mitochondria and do not reveal any toxicity towards the primary culture of rat cortex neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号