首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
Store-operated Ca2+ entry (SOCE) is a functionally relevant mechanism for Ca2+ influx present in electrically excitable and non-excitable cells. Regulation of Ca2+ entry through store-operated channels is essential to maintain an appropriate intracellular Ca2+ homeostasis and prevent cell damage. Calcium-release activated channels exhibit Ca2+-dependent inactivation mediated by two temporally separated mechanisms: fast Ca2+-dependent inactivation takes effect in the order of milliseconds and involves the interaction of Ca2+ with residues in the channel pore while slow Ca2+-dependent inactivation (SCDI) develops over tens of seconds, requires a global rise in [Ca2+]cyt and is a mechanism regulated by mitochondria. Recent studies have provided evidence that the protein SARAF (SOCE-associated regulatory factor) is involved in the mechanism underlying SCDI of Orai1. SARAF is an endoplasmic reticulum (ER) membrane protein that associates with STIM1 and translocate to plasma membrane-ER junctions in a STIM1-dependent manner upon store depletion to modulate SOCE. SCDI mediated by SARAF depends on the location of the STIM1-Orai1 complex within a PI(4,5)P2-rich microdomain. SARAF also interacts with Orai1 and TRPC1 in cells endogenously expressing STIM1 and cells with a low STIM1 expression and modulates channel function. This review focuses on the modulation by SARAF of SOCE and other forms of Ca2+ influx mediated by Orai1 and TRPC1 in order to provide spatio-temporally regulated Ca2+ signals.  相似文献   

2.
3.
Fast inactivation of the Ca2+ release-activated Ca2+ current (I CRAC) was studied using whole cell patch-clamp recordings in rat basophilic leukemia (RBL-1) cells. Application of hyperpolarizing voltage steps from the holding potential of 0 mV revealed that I CRAC declined in amplitude over tens of milliseconds during steps more negative than −40 mV. This fast inactivation was predominantly Ca2+-dependent because first, it could be more effectively suppressed when BAPTA was included in the recording pipette instead of EGTA and second, replacing external Ca2+ with Sr2+ resulted in less inactivation. Recovery from inactivation was faster in the presence of BAPTA than EGTA. The extent of fast inactivation was independent of the whole cell I CRAC amplitude, compatible with the notion that the inactivation arose from a local feedback inhibition by permeating Ca2+ ions only on the channel it permeated. Ca2+ release from stores did not affect fast inactivation, nor did FCɛRI receptor stimulation. Current clamp recordings showed that the majority of RBL cells had a membrane potential close to −90 mV following stimulation of FCɛRI receptors. Hence fast inactivation is likely to impact on the extent of Ca2+ influx through CRAC channels under physiological conditions and appears to be an important negative feedback process that limits Ca2+ increases. Received: 28 August 1998/Revised: 30 November 1998  相似文献   

4.
Store-operated Ca2+ entry (SOCE) due to activation of Ca2+ release-activated Ca2+ (CRAC) channels leads to sustained elevation of cytoplasmic Ca2+ and activation of lymphocytes. CRAC channels consisting of four pore-forming Orai1 subunits are activated by STIM1, an endoplasmic reticulum Ca2+ sensor that senses intracellular store depletion and migrates to plasma membrane proximal regions to mediate SOCE. One of the fundamental properties of CRAC channels is their Ca2+-dependent fast inactivation. To identify the domains of Orai1 involved in fast inactivation, we have mutated residues in the Orai1 intracellular loop linking transmembrane segment II to III. Mutation of four residues, V151SNV154, at the center of the loop (MutA) abrogated fast inactivation, leading to increased SOCE as well as higher CRAC currents. Point mutation analysis identified five key amino acids, N153VHNL157, that increased SOCE in Orai1 null murine embryonic fibroblasts. Expression or direct application of a peptide comprising the entire intracellular loop or the sequence N153VHNL157 blocked CRAC currents from both wild type (WT) and MutA Orai1. A peptide incorporating the MutA mutations had no blocking effect. Concatenated Orai1 constructs with four MutA monomers exhibited high CRAC currents lacking fast inactivation. Reintroduction of a single WT monomer (MutA-MutA-MutA-WT) was sufficient to fully restore fast inactivation, suggesting that only a single intracellular loop can block the channel. These data suggest that the intracellular loop of Orai1 acts as an inactivation particle, which is stabilized in the ion permeation pathway by the N153VHNL157 residues. These results along with recent reports support a model in which the N terminus and the selectivity filter of Orai1 as well as STIM1 act in concert to regulate the movement of the intracellular loop and evoke fast inactivation.  相似文献   

5.
Ca2+ signals propagate in wave form along individual cells of the central nervous system(CNS) and through networks of connected cells of neuronal and multiple glial cell types. Inorder for wave fronts to convey information, signaling mechanisms are required that allowwaves to propagate reproducibly and without decrement in signal strength over long distances.CNS Ca2+ waves are under specific integrated local control, made possible by interactions atlocal subcellular microdomains between endoplasmic reticulum and mitochondria. Activemitochondria located near the mouth of inositol trisphosphate receptor (InsP3R) channel clustersin glia take up Ca2+, which may prevent a buildup of Ca2+ around the InsP3R channel, therebydecreasing the rate of Ca2+-induced receptor inactivation, and prolonging channel open time.Mitochondria may amplify InsP;i3-dependent Ca2;pl signals by a transient permeability transitionin response to Ca2+ uptake into the mitochondrion. Other evidence suggests privileged accessinto mitochondria for Ca2+ entering neurons by glutamatergic receptor channels. This enablesspecific signal modulation as the Ca2+ wave is propagated into neurons, such that mitochondrialocated close to glutamate channels can prolong the neuronal cytosolic response time bysuccessive uptake and release of Ca2+. Disruption of mitochondrial function deregulates theability of CNS-derived cells to undergo normal Ca2+ signaling and wave propagation.  相似文献   

6.
Using the voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In our study, we identified and studied a charibdotoxin-sensitive component of Ca2+-dependent K+ current carried through the channels of high conductance (in most publications called “big conductance,”I BK(Ca)). This component was completely blocked by 100 nM charibdotoxin and by tetraethylammonium in concentrations as low as 1 mM.I BK(Ca) demonstrated fast kinetics of inactivation, which nearly coincided with that of Ca2+ current. In addition to the dependence on Ca2+ concentration, this current also showed voltage-dependent properties: with a rise in the level of depolarization its amplitude increased. In many cells, depolarizing shifts in the membrane potential evoke spontaneous outward currents. Such currents probably represent the secondary effect of cyclic Ca2+ release from the caffeine-sensitive intracellular stores that result in short-term activation of charibdotoxin-sensitive Ca2+-dependent K+ channels.  相似文献   

7.
Depletion of intracellular Ca2 + stores in mammalian cells results in Ca2 + entry across the plasma membrane mediated primarily by Ca2 + release-activated Ca2 + (CRAC) channels. Ca2 + influx through these channels is required for the maintenance of homeostasis and Ca2 + signaling in most cell types. One of the main features of native CRAC channels is fast Ca2 +-dependent inactivation (FCDI), where Ca2 + entering through the channel binds to a site near its intracellular mouth and causes a conformational change, closing the channel and limiting further Ca2 + entry. Early studies suggested that FCDI of CRAC channels was mediated by calmodulin. However, since the discovery of STIM1 and Orai1 proteins as the basic molecular components of the CRAC channel, it has become apparent that FCDI is a more complex phenomenon. Data obtained using heterologous overexpression of STIM1 and Orai1 suggest that, in addition to calmodulin, several cytoplasmic domains of STIM1 and Orai1 and the selectivity filter within the channel pore are required for FCDI. The stoichiometry of STIM1 binding to Orai1 also has emerged as an important determinant of FCDI. Consequently, STIM1 protein expression levels have the potential to be an endogenous regulator of CRAC channel Ca2 + influx. This review discusses the current understanding of the molecular mechanisms governing the FCDI of CRAC channels, including an evaluation of further experiments that may delineate whether STIM1 and/or Orai1 protein expression is endogenously regulated to modulate CRAC channel function, or may be dysregulated in some pathophysiological states.  相似文献   

8.
The 30+ members of the family of TRP channels are diverse in their physiological roles, yet the mechanisms that regulate their gating may be conserved. In particular, all TRP channels show an activity-dependent inhibition which is mediated by Ca2+. The mechanism by which Ca2+ inhibits TRP channels is currently a matter of intense debate, with Ca2+-regulated kinases, phosphatases, phospholipases, and calmodulin all proposed to be involved. In this review, we will discuss different mechanisms for Ca2+-dependent desensitization in TRP channels. We will conclude with a model that focuses on Ca2+-dependent activation of phospholipase C and Ca2+ binding to calmodulin and propose that the phospholipase C and calmodulin pathways are structurally and functionally coupled.  相似文献   

9.
Epithelial ion transport is mainly under the control of intracellular cAMP and Ca2+ signaling. Although the molecular mechanisms of cAMP-induced epithelial ion secretion are well defined, those induced by Ca2+ signaling remain poorly understood. Because calcium-sensing receptor (CaSR) activation results in an increase in cytosolic Ca2+ ([Ca2+]cyt) but a decrease in cAMP levels, it is a suitable receptor for elucidating the mechanisms of [Ca2+]cyt-mediated epithelial ion transport and duodenal bicarbonate secretion (DBS). CaSR proteins have been detected in mouse duodenal mucosae and human intestinal epithelial cells. Spermine and Gd3+, two CaSR activators, markedly stimulated DBS without altering duodenal short circuit currents in wild-type mice but did not affect DBS and duodenal short circuit currents in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice. Clotrimazole, a selective blocker of intermediate conductance Ca2+-activated K+ channels but not chromanol 293B, a selective blocker of cAMP-activated K+ channels (KCNQ1), significantly inhibited CaSR activator-induced DBS, which was similar in wild-type and KCNQ1 knockout mice. HCO3 fluxes across epithelial cells were activated by a CFTR activator, but blocked by a CFTR inhibitor. CaSR activators induced HCO3 fluxes, which were inhibited by a receptor-operated channel (ROC) blocker. Moreover, CaSR activators dose-dependently raised cellular [Ca2+]cyt, which was abolished in Ca2+-free solutions and inhibited markedly by selective CaSR antagonist calhex 231, and ROC blocker in both animal and human intestinal epithelial cells. Taken together, CaSR activation triggers Ca2+-dependent DBS, likely through the ROC, intermediate conductance Ca2+-activated K+ channels, and CFTR channels. This study not only reveals that [Ca2+]cyt signaling is critical to modulate DBS but also provides novel insights into the molecular mechanisms of CaSR-mediated Ca2+-induced DBS.  相似文献   

10.
Dephosphorylation of Ca2+ channels by the Ca2+-activated phosphatase 2B (calcineurin) has been previously suggested as a mechanism of Ca2+-dependent inactivation of Ca2+ current in rat pituitary tumor (GH3) cells. Although recent evidence favors an inactivation mechanism involving direct binding of Ca2+ to the channel protein, the alternative ``calcineurin hypothesis' has not been critically tested using the specific calcineurin inhibitors cyclosporine A (CsA) or FK506 in GH3 cells. To determine if calcineurin plays a part in the voltage- and/or Ca2+-dependent components of dihydropyridine-sensitive Ca2+ current decay, we rapidly altered the intracellular Ca2+ buffering capacity of GH3 cells by flash photolysis of DM-nitrophen, a high affinity Ca2+ chelator. Flash photolysis induced a highly reproducible increase in the extent of Ca2+ current inactivation in a two-pulse voltage protocol with Ca2+ as the charge carrier, but had no effect when Ba2+ was substituted for Ca2+. Despite confirmation of the abundance of calcineurin in the GH3 cells by biochemical assays, acute application of CsA or FK506 after photolysis had no effect on Ca2+-dependent inactivation of Ca2+ current, even when excess cyclophilin or FK binding protein were included in the internal solution. Prolonged preincubation of the cells with FK506 or CsA did not inhibit Ca2+-dependent inactivation. Similarly, blocking calmodulin activation with calmidazolium or blocking calcineurin with fenvalerate did not influence the extent of Ca2+-dependent inactivation after photolysis. The results provide strong evidence against Ca2+-dependent dephosphorylation as the mechanism of Ca2+ current inactivation in GH3 cells, but support the alternative idea that Ca2+-dependent inactivation reflects a direct effect of intracellular Ca2+ on channel gating. Received: 12 August 1996/Revised: 21 October 1996  相似文献   

11.
Calcium-dependent inactivation and the dynamics of calcium puffs and sparks   总被引:1,自引:0,他引:1  
Localized intracellular Ca2+ elevations known as puffs and sparks arise from the cooperative activity of inositol 1,4,5-trisphosphate receptor Ca2+ channels (IP3Rs) and ryanodine receptor Ca2+ channels (RyRs) clustered at Ca2+ release sites on the surface of the endoplasmic reticulum or sarcoplasmic reticulum. When Markov chain models of these intracellular Ca2+-regulated Ca2+ channels are coupled via a mathematical representation of a Ca2+ microdomain, simulated Ca2+ release sites may exhibit the phenomenon of “stochastic Ca2+ excitability” reminiscent of Ca2+ puffs and sparks where channels open and close in a concerted fashion. To clarify the role of Ca2+ inactivation of IP3Rs and RyRs in the dynamics of puffs and sparks, we formulate and analyze Markov chain models of Ca2+ release sites composed of 10–40 three-state intracellular Ca2+ channels that are inactivated as well as activated by Ca2+. We study how the statistics of simulated puffs and sparks depend on the kinetics and dissociation constant of Ca2+ inactivation and find that puffs and sparks are often less sensitive to variations in the number of channels at release sites and strength of coupling via local [Ca2+] when the average fraction of inactivated channels is significant. Interestingly, we observe that the single channel kinetics of Ca2+ inactivation influences the thermodynamic entropy production rate of Markov chain models of puffs and sparks. While excessively fast Ca2+ inactivation can preclude puffs and sparks, moderately fast Ca2+ inactivation often leads to time-irreversible puffs and sparks whose termination is facilitated by the recruitment of inactivated channels throughout the duration of the puff/spark event. On the other hand, Ca2+ inactivation may be an important negative feedback mechanism even when its time constant is much greater than the duration of puffs and sparks. In fact, slow Ca2+ inactivation can lead to release sites with a substantial fraction of inactivated channels that exhibit puffs and sparks that are nearly time-reversible and terminate without additional recruitment of inactivated channels.  相似文献   

12.
Calcium (Ca2+) is a second messenger regulating a wide variety of intracellular processes. Using GABA-and glycinergic synapses as examples, this review analyzes two functions of this unique ion: postsynaptic Ca2+-dependent modulation of receptor-operated channels and Ca2+-induced retrograde regulation of neurotransmitter release from the presynaptic terminals. Phosphorylation, rapid Ca2+-induced modulation via intermediate Ca2+-binding proteins, and changes in the number of functional receptors represent the main pathways of short-and long-term plasticity of postsynaptic receptor-operated channel machinery. Retrograde signaling is an example of synaptic modulation triggered by stimulation of postsynaptic cells and mediated via regulation of presynaptic neurotransmitter release. This mechanism provides postsynaptic neurons with efficient tools to control the presynaptic afferents in an activity-dependent mode. Elevation of intracellular Ca2+ in a postsynaptic neuron triggers the synthesis of endocannabinoids (derivatives of arachidonic acid). Their retrograde diffusion through the synaptic cleft and consequent activation of presynaptic G-protein coupled to CB1 receptors inhibits the release of neurotransmitter. These mechanisms of double modulation, which include control over the function of postsynaptic ion channels and retrograde suppression of the release machinery, play an important role in Ca2+-dependent control of the main excitatory and inhibitory synaptic pathways in the mammalian nervous system.  相似文献   

13.
Colon cancer cells, like other types of cancer cells, undergo the remodeling of the intracellular Ca2+ homeostasis that contributes to cancer cell hallmarks including enhanced cell proliferation, migration, and survival. Colon cancer cells display enhanced store-operated Ca2+ entry (SOCE) compared with their non-cancer counterparts. Colon cancer cells display an abnormal expression of SOCE molecular players including Orai1 and TRPC1 channels, and the stromal interacting molecule (STIM) 1 and 2. Interestingly, upregulation of Orai1 and TRPC1 channels and their contribution to SOCE are associated with cancer malignancy in colon cancer cells. In a specific cellular model of colon cancer, whereas in non-cancer colon cells SOCE is composed of the Ca2+ release activated (CRAC) currents, in colon cancer cells SOCE is composed of CRAC- and cationic, non-selective store operated (SOC) currents. Former SOCs are mediated by TRPC1 channels. Moreover, colon cancer cells also display dysregulation of the expression of 1,4,5-triphosphate receptors (IP3R) that could contribute to the enhanced SOCE. Another important factor underlying the enhanced SOCE is the differential mitochondrial modulation of the CRAC and SOC currents in non-cancer and colon cancer cells. In colon cancer cells, mitochondria take up more Ca2+ that prevent the Ca2+-dependent inactivation of the SOCs, leading to sustained Ca2+ entry. Notably, the inhibition of SOCE in cancer colon cells abolishes their cancer hallmarks. Robust evidence has shown the efficiency of non-steroidal anti-inflammatory drugs (NSAIDs) and difluoromethylornithine (DFMO) to reverse the enhanced cell proliferation, migration, and apoptosis resistance of cancer cells. In colon cancer cells, both NSAIDs and DFMO decrease SOCE, but they target different molecular components of SOCE. NSAIDs decrease the Ca2+ uptake by mitochondria, limiting their ability to prevent the Ca2+-dependent inactivation of the SOCs that underlie SOCE. On the other hand, DFMO inhibits the expression of TRPC1 channels in colon cancer cells, eliminating their contribution to SOCE. The identification of players of SOCE in colon cancer cells may help to better understand the remodeling of the Ca2+ homeostasis in cancer. Importantly, the use of different pharmacological tools that target different SOCE molecular players in colon cancer cells may play a pivotal role in designing better chemoprevention strategies.  相似文献   

14.
The current understanding of Ca2+ channel function is derived from the use of the patch-clamp technique. In particular, the measurement of fast cellular Ca2+ currents is routinely achieved using whole-cell voltage-clamp recordings. However, this experimental approach is not applicable to the study of local native Ca2+ channels during physiological changes of membrane potential in complex cells, since the voltage-clamp configuration constrains the membrane potential to a given value. Here, we report for the first time to our knowledge that Ca2+ currents from individual cells can be quantitatively measured beyond the limitations of the voltage-clamp approach using fast Ca2+ imaging with low-affinity indicators. The optical measurement of the Ca2+ current was correlated with the membrane potential, simultaneously measured with a voltage-sensitive dye to investigate the activation of Ca2+ channels along the apical dendrite of the CA1 hippocampal pyramidal neuron during the back-propagation of an action potential. To validate the method, we analyzed the voltage dependence of high- and low-voltage-gated Ca2+ channels. In particular, we measured the Ca2+ current component mediated by T-type channels, and we investigated the mechanisms of recovery from inactivation of these channels. This method is expected to become a reference approach to investigate Ca2+ channels in their native physiological environment.  相似文献   

15.
Ca2+ influx by store-operated Ca2+ channels (SOCs) mediates all Ca2+-dependent cell functions, but excess Ca2+ influx is highly toxic. The molecular components of SOC are the pore-forming Orai1 channel and the endoplasmic reticulum Ca2+ sensor STIM1. Slow Ca2+-dependent inactivation (SCDI) of Orai1 guards against cell damage, but its molecular mechanism is unknown. Here, we used homology modeling to identify a conserved STIM1(448–530) C-terminal inhibitory domain (CTID), whose deletion resulted in spontaneous clustering of STIM1 and full activation of Orai1 in the absence of store depletion. CTID regulated SCDI by determining access to and interaction of the STIM1 inhibitor SARAF with STIM1 Orai1 activation region (SOAR), the STIM1 domain that activates Orai1. CTID had two lobes, STIM1(448–490) and STIM1(490–530), with distinct roles in mediating access of SARAF to SOAR. The STIM1(448–490) lobe restricted, whereas the STIM1(490–530) lobe directed, SARAF to SOAR. The two lobes cooperated to determine the features of SCDI. These findings highlight the central role of STIM1 in SCDI and provide a molecular mechanism for SCDI of Orai1.  相似文献   

16.
It is widely believed that Ba2+ currents carried through L-type Ca2+ channels inactivate by a voltage- dependent mechanism similar to that described for other voltage-dependent channels. Studying ionic and gating currents of rabbit cardiac Ca2+ channels expressed in different subunit combinations in tsA201 cells, we found a phase of Ba2+ current decay with characteristics of ion-dependent inactivation. Upon a long duration (20 s) depolarizing pulse, IBa decayed as the sum of two exponentials. The slow phase (τ ≈ 6 s, 21°C) was parallel to a reduction of gating charge mobile at positive voltages, which was determined in the same cells. The fast phase of current decay (τ ≈ 600 ms), involving about 50% of total decay, was not accompanied by decrease of gating currents. Its amplitude depended on voltage with a characteristic U-shape, reflecting reduction of inactivation at positive voltages. When Na+ was used as the charge carrier, decay of ionic current followed a single exponential, of rate similar to that of the slow decay of Ba2+ current. The reduction of Ba2+ current during a depolarizing pulse was not due to changes in the concentration gradients driving ion movement, because Ba2+ entry during the pulse did not change the reversal potential for Ba2+. A simple model of Ca2+-dependent inactivation (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1993. J. Gen. Physiol. 102:1005–1030) robustly accounts for fast Ba2+ current decay assuming the affinity of the inactivation site on the α1 subunit to be 100 times lower for Ba2+ than Ca2+.  相似文献   

17.
Mitochondrial calcium channels   总被引:1,自引:0,他引:1  
Uta C. Hoppe 《FEBS letters》2010,584(10):1975-1981
Mitochondrial Ca2+ handling plays an important role in energy production and various cellular signaling processes. Mitochondrial Ca2+ uptake is regulated by the mitochondrial Ca2+ uniporter (MCU), at least one non-MCU Ca2+ channel and possibly a mitochondrial ryanodine receptor. Two distinct mechanisms mediate Ca2+ outward transport, the Na+-dependent (mNCX) and the Na+-independent Ca2+ efflux. In recent years we gained more insight into the regulation and function of these different Ca2+ transport mechanisms. However, the precise physiological role and the molecular structure of all mitochondrial Ca2+ transporters and channels still has to be determined.  相似文献   

18.
In electrically non-excitable cells, one major source of Ca2+ influx is through the store-operated (or Ca2+ release-activated Ca2+) channel by which the process of emptying the intracellular Ca2+ stores results in the activation of Ca2+ channels in the plasma membrane. Using both whole-cell patch-clamp and Ca2+ imaging technique, we describe the electrophysiology mechanism underlying formyl-peptide receptor like 1 (FPRL1) linked to intracellular Ca2+ mobilization. The FPRL1 agonists induced Ca2+ release from the endoplasmic reticulum and subsequently evoked ICRAC-like currents displaying fast inactivation in K562 erythroleukemia cells which expresses FPRL1, but had almost no effect in K562 cells treated with FPRL1 RNA-interference and HEK293 cells which showed no FPRL1 expression. The currents were impaired after either complete store depletion by the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, or after inhibition of PLC by U73122. Our results present the first evidence that FPRL1 is a potent mediator in the activation of CRAC channels.  相似文献   

19.
20.
A precise temporal and spatial control of intracellular Ca2+ concentration is essential for a coordinated contraction of the heart. Following contraction, cardiac cells need to rapidly remove intracellular Ca2+ to allow for relaxation. This task is performed by two transporters: the plasma membrane Na+-Ca2+ exchanger (NCX) and the sarcoplasmic reticulum (SR) Ca2+‐ATPase (SERCA). NCX extrudes Ca2+ from the cell, balancing the Ca2+entering the cytoplasm during systole through L-type Ca2+ channels. In parallel, following SR Ca2+ release, SERCA activity replenishes the SR, reuptaking Ca2+ from the cytoplasm.The activity of the mammalian exchanger is fine-tuned by numerous ionic allosteric regulatory mechanisms. Micromolar concentrations of cytoplasmic Ca2+ potentiate NCX activity, while an increase in intracellular Na+ levels inhibits NCX via a mechanism known as Na+-dependent inactivation. Protons are also powerful inhibitors of NCX activity. By regulating NCX activity, Ca2+, Na+ and H+ couple cell metabolism to Ca2+ homeostasis and therefore cardiac contractility. This review summarizes the recent progress towards the understanding of the molecular mechanisms underlying the ionic regulation of the cardiac NCX with special emphasis on pH modulation and its physiological impact on the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号