首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the causal relationship between chronic cold exposure and insulin resistance and the mechanisms of how DNA methylation and histone deacetylation regulate cold-reduced insulin resistance. 46 adult male mice from postnatal day 90–180 were randomly assigned to control group and cold-exposure group. Mice in cold-exposure group were placed at temperature from -1 to 4 °C for 30 days to mimic chronic cold environment. Then, fasting blood glucose, blood insulin level and insulin resistance index were measured with enzymatic methods. Immunofluorescent labeling was carried out to visualize the insulin receptor substrate 2 (IRS2), Obese receptor (Ob-R, a leptin receptor), voltage-dependent anion channel protein 1 (VDAC1), cytochrome C (cytC), 5-methylcytosine (5-mC) positive cells in hippocampal CA1 area. Furthermore, the expressions of some proteins mentioned above were detected with Western blot. The results showed: ① Chronic cold exposure could reduce the insulin resistance index (P < 0.01) and increase the number of IRS2 positive cells and Ob-R positive cells in hippocampus (P < 0.01). ② The expressions of mitochondrial energy-relative proteins, VDAC1 and cytC, were higher in cold-exposure group than in control group with both immunohistochemical staining and Western blot (P < 0.01). ③ Chronic cold exposure increased DNA methylation and histone deacetylation in the pyramidal cells of CA1 area and led to an increase in the expression of histone deacetylase 1 (HDAC1) and DNA methylation relative enzymes (P < 0.01). In conclusion, chronic cold exposure can improve insulin sensitivity, with the involvement of DNA methylation, histone deacetylation and the regulation of mitochondrial energy metabolism. These epigenetic modifications probably form the basic mechanism of cold-reduced insulin resistance.  相似文献   

2.
High blood glucose levels are the main feature of diabetes. However, the underlying mechanism linking high glucose concentration to diabetic complications is still not fully elucidated, particularly with regard to human physiology. Excess of glucose is likely to trigger a metabolic response depending on the cell features, activating deleterious pathways involved in the complications of diabetes. In this study, we aim to elucidate how acute and prolonged hyperglycaemia alters the biology and metabolism in human fibroblasts and endothelial cells.We found that hyperglycaemia triggers a metabolic switch from oxidative phosphorylation to glycolysis that is maintained over prolonged time. Moreover, osmotic pressure is a major factor in the early metabolic response, decreasing both mitochondrial transmembrane potential and cellular proliferation. After prolonged exposure to hyperglycaemia we observed decreased mitochondrial steady-state and uncoupled respiration, together with a reduced ATP/ADP ratio. At the same time, we could not detect major changes in mitochondrial transmembrane potential and reactive oxygen species.We suggest that the physiological and metabolic alterations observed in healthy human primary fibroblasts and endothelial cells are an adaptive response to hyperglycaemia. The severity of metabolic and bioenergetics impairment associated with diabetic complications may occur after longer glucose exposure or due to interactions with cell types more sensitive to hyperglycaemia.  相似文献   

3.
Aims/hypothesisCombination treatment with exendin-4 and gastrin has proven beneficial in treatment of diabetes and preservation of beta cell mass in diabetic mice. Here, we examined the chronic effects of a GLP-1-gastrin dual agonist ZP3022 on glycemic control and beta cell dysfunction in overtly diabetic Zucker Diabetic Fatty (ZDF) rats.MethodsZDF rats aged 11 weeks were dosed s.c., b.i.d. for 8 weeks with vehicle, ZP3022, liraglutide, exendin-4, or gastrin-17 with or without exendin-4. Glycemic control was assessed by measurements of HbA1c and blood glucose levels, as well as glucose tolerance during an oral glucose tolerance test (OGTT). Beta cell dynamics were examined by morphometric analyses of beta and alpha cell fractions.ResultsZP3022 improved glycemic control as measured by terminal HbA1c levels (6.2 ± 0.12 (high dose) vs. 7.9 ± 0.07% (vehicle), P < 0.001), as did all treatments, except gastrin-17 monotherapy. In contrast, only ZP3022, exendin-4 and combination treatment with exendin-4 and gastrin-17 significantly improved glucose tolerance and increased insulin levels during an OGTT. Moreover, only ZP3022 significantly enhanced the beta cell fraction in ZDF rats, a difference of 41%, when compared to the vehicle group (0.31 ± 0.03 vs. 0.22 ± 0.02%, respectively, P < 0.05).ConclusionThese data suggest that ZP3022 may have therapeutic potential in the prevention/delay of beta cell dysfunction in type 2 diabetes.  相似文献   

4.
Unresolved replication intermediates can block the progression of replication forks and become converted into DNA lesions, hence exacerbating genomic instability. The p53-binding protein 1 (53BP1) forms nuclear bodies at sites of unrepaired DNA lesions to shield these regions against erosion, in a manner dependent on the DNA damage kinase ATM. The molecular mechanism by which ATM is activated upon replicative stress to localize the 53BP1 protection complex is unknown. Here we show that the ATM-INteracting protein ATMIN (also known as ASCIZ) is partially required for 53BP1 localization upon replicative stress. Additionally, we demonstrate that ATM activation is impaired in cells lacking ATMIN and we define that ATMIN is required for initiating ATM signaling following replicative stress. Furthermore, loss of ATMIN leads to chromosomal segregation defects. Together these data reveal that chromatin integrity depends on ATMIN upon exposure to replication-induced stress.  相似文献   

5.
《Phytomedicine》2014,21(12):1582-1586
In the present study, it is shown for the first time that an extract of Hintonia latiflora (HLE) which is used as an antidiabetic herbal medicine, is not only able to decrease blood glucose concentration but additionally exerts a vasodilating effect. Accordingly, this extract might have a positive influence on diabetes-associated dysfunction of blood vessels.The vasodilating effect was demonstrated in vitro in aortic rings of guinea pigs as well as in vivo in rabbits. Aortic rings pre-contracted with noradrenaline (NA) could completely be relaxed by HLE (EC50: 51.98 mg/l). In contrast, potassium-induced contractions were not diminished by HLE. Therefore, it can be suggested that the vasodilating effect of HLE is primarily the result of an inhibition of G protein-induced increase in intracellular calcium and not of a blockade of voltage-operated L-type calcium channels.The neoflavonoid coutareagenin (COU), a constituent of HLE which in part is responsible for the blood glucose-lowering effect of HLE, also relaxed NA-induced contractions of aortic rings (EC50: 32.55 mg/l) and only weakly inhibited potassium-induced contractions.Experiments in aortic rat cells revealed that calcium transients evoked by vasopressin were suppressed by 60 mg/l COU supporting the idea of an inhibition of G protein-induced intracellular calcium release by a constituent of HLE.To study the effect of HLE on vascular tone under in vivo conditions, ultrasound measurements were carried out in conscious rabbits which received a single oral dose of HLE. Under the influence of HLE, a vasodilation combined with a lowering of blood flow velocity could be observed in the abdominal aorta and the common carotid artery. Additionally, a decrease in blood glucose concentration in the HLE group occurred.The combination of a blood glucose-lowering with a vasodilating effect may be helpful for reducing angiopathies, typical long-term complications in patients with diabetes mellitus.  相似文献   

6.
7.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   

8.
Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phoshate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.  相似文献   

9.
AKAP12/Gravin (A kinase anchor protein 12) belongs to the group of A-kinase scaffold proteins and functions as a tumor suppressor in some human primary cancers. While AKAP12 is found consistently downregulated in hepatocellular carcinoma (HCC), its involvement in hepatocarcinogenesis has not been fully elucidated. We identified targeting sites for miR-103 in the 3′-untranslated region (3′-UTR) of AKAP12 by bioinformatic analysis and confirm their function by a luciferase reporter gene assay. We reveal miR-103 expression to be inversely correlated with AKAP12 in HCC tissue samples and show that overexpressed miR-103 promotes cell proliferation and inhibits apoptosis by downregulating AKAP12 expression in HCC cell lines. On the other hand, repression of miR-103 suppresses proliferation and promotes apoptosis in HCC cells by increasing AKAP12. In xenografted HCC tumors, overexpression of AKAP12 suppresses tumor growth whereas overexpression of miR-103 enhances tumor growth while repressing AKAP12. Since the activation of telomerase is crucial for cells to gain immortality and proliferation ability, we investigated whether AKAP12 expression affected telomerase activity in HCC cells. Both AKAP12 overexpression and protein kinase Cα (PKCα) inhibition prevent nuclear translocation and phosphorylation of TERT and reduce telomerase activity in HCC cells. These findings indicate that miR-103 potentially acts as an oncogene in HCC by inhibiting AKAP12 expression and raise the possibility that miR-103 increases telomerase activity by increasing PKCα activity. Thus, miR-103 may represent a new potential diagnostic and therapeutic target for HCC treatment.  相似文献   

10.
11.
Dual oxidase 2 enzyme is a member of the reactive oxygen species-generating cell membrane NADPH oxidases involved in mucosal innate immunity. It is not known if the biological activity of dual oxidase 2 is mediated by direct bacterial killing by reactive oxygen species produced by the enzyme or by the same reactive oxygen species acting as second messengers that stimulate novel gene expression. To uncover the role of reactive oxygen species and dual oxidases as signaling molecules, we have dissected the pathway triggered by epidermal growth factor to induce mucins, the principal protective components of gastrointestinal mucus. We show that dual oxidase 2 is essential for selective epidermal growth factor induction of the transmembrane MUC3 and the secreted gel-forming MUC5AC mucins. Reactive oxygen species generated by dual oxidase 2 stabilize tyrosine phosphorylation of epidermal growth factor receptor and induce MUC3 and MUC5AC through persistent activation of extracellular signal-regulated kinases 1/2–protein kinase C. Knocking down dual oxidase 2 by selective RNA targeting (siRNA) reduced epidermal growth factor receptor phosphorylation, and MUC3 and MUC5AC gene expression. Extracellular reactive oxygen species produced by dual oxidase 2, upon stimulation by epidermal growth factor, stabilize epidermal growth factor receptor phosphorylation and activate extracellular signal-regulated kinases 1/2–protein kinase C which induce MUC5AC and MUC3. Extracellular reactive oxygen species produced by dual oxidase 2 that are known to directly kill bacteria, also contribute to the maintenance of the epidermal growth factor-amplification loop, which induces mucins. These data suggest a new function of dual oxidase 2 protein in the luminal protection of the gastrointestinal tract through the induction of mucin expression by growth factors.  相似文献   

12.
PERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase. It was demonstrated previously in S. cerevisiae that single point mutations in eIF2α’s N-terminus severely impaired phosphorylation at Ser51. To assess whether similar recognition patterns are present in mammalian eIF2α, we expressed human eIF2α’s with these mutations in mouse embryonic fibroblasts and assessed their phosphorylation under diverse stress conditions. Some of the mutations prevented the stress-induced phosphorylation of eIF2α by all mammalian kinases, thus defining amino acid residues in eIF2α (Gly 30, Leu 50, and Asp 83) that are required for substrate recognition. We also identified residues that were less critical or not required for recognition by the mammalian kinases (Ala 31, Met 44, Lys 79, and Tyr 81), even though they were essential for recognition of the yeast eIF2α by GCN2. We propose that mammalian eIF2α kinases evolved to maximize their interactions with the evolutionarily conserved Ser51 residue of eIF2α in response to diverse stress conditions, thus adding to the complex signaling pathways that mammalian cells have over simpler organisms.  相似文献   

13.
Two ancient processes, endocytosis and exocytosis, are employed by eukaryotic cells to shape their plasma membrane and interact with their environment. Filamentous fungi have adapted them to roles compatible with their unique ecological niche and morphology. These organisms are optimal systems in which to address questions such as how endocytosis is localized, how endocytosis and exocytosis interact, and how large molecules traverse eukaryotic cell walls. In the tips of filamentous (hyphal) cells, a ring of endocytosis encircles an apical crescent of exocytosis, suggesting that this area is able to support an endocytic recycling route, although both processes can occur in subapical regions as well. Endocytosis and exocytosis underlie growth, but also facilitate disease progression and secretion of industrially relevant compounds in these organisms. Here we highlight recent work on endocytosis and exocytosis in filamentous fungi.  相似文献   

14.
Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance.  相似文献   

15.
The blood-brain barrier (BBB) consists of differentiated cells integrating in one ensemble to control transport processes between the central nervous system (CNS) and peripheral blood. Molecular organization of BBB affects the extracellular content and cell metabolism in the CNS. Developmental aspects of BBB attract much attention in recent years, and barriergenesis is currently recognized as a very important and complex mechanism of CNS development and maturation. Metabolic control of angiogenesis/barriergenesis may be provided by glucose utilization within the neurovascular unit (NVU). The role of glycolysis in the brain has been reconsidered recently, and it is recognized now not only as a process active in hypoxic conditions, but also as a mechanism affecting signal transduction, synaptic activity, and brain development. There is growing evidence that glycolysis-derived metabolites, particularly, lactate, affect barriergenesis and functioning of BBB. In the brain, lactate produced in astrocytes or endothelial cells can be transported to the extracellular space via monocarboxylate transporters (MCTs), and may act on the adjoining cells via specific lactate receptors. Astrocytes are one of the major sources of lactate production in the brain and significantly contribute to the regulation of BBB development and functioning. Active glycolysis in astrocytes is required for effective support of neuronal activity and angiogenesis, while endothelial cells regulate bioavailability of lactate for brain cells adjusting its bidirectional transport through the BBB. In this article, we review the current knowledge with regard to energy production in endothelial and astroglial cells within the NVU. In addition, we describe lactate-driven mechanisms and action of alternative products of glucose metabolism affecting BBB structural and functional integrity in developing and mature brain.  相似文献   

16.
Here we report identification of the lkh1 gene encoding a LAMMER kinase homolog (Lkh1) from a screen for DNA repair-deficient mutants in Ustilago maydis. The mutant allele isolated results from a mutation at glutamine codon 488 to a stop codon that would be predicted to lead to truncation of the carboxy-terminal kinase domain of the protein. This mutant (lkh1Q488*) is highly sensitive to ultraviolet light, methyl methanesulfonate, and hydroxyurea. In contrast, a null mutant (lkh1Δ) deleted of the entire lkh1 gene has a less severe phenotype. No epistasis was observed when an lkh1Q488* rad51Δ double mutant was tested for genotoxin sensitivity. However, overexpressing the gene for Rad51, its regulator Brh2, or the Brh2 regulator Dss1 partially restored genotoxin resistance of the lkh1Δ and lkh1Q488* mutants. Deletion of lkh1 in a chk1Δ mutant enabled these double mutant cells to continue to cycle when challenged with hydroxyurea. lkh1Δ and lkh1Q488* mutants were able to complete the meiotic process but exhibited reduced heteroallelic recombination and aberrant chromosome segregation. The observations suggest that Lkh1 serves in some aspect of cell cycle regulation after DNA damage or replication stress and that it also contributes to proper chromosome segregation in meiosis.  相似文献   

17.
Lambertellin (1) and ergosta-5,7,22-trien-3-ol (2) were isolated from the solid rice fermentation of the plant pathogenic fungus Pycnoporus sanguineus MUCL 51321. Their structures were elucidated using comprehensive spectroscopic methods. The isolated compounds were tested on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Lambertellin (1) exhibited promising inhibitory activity against nitric oxide (NO) production with IC50 value of 3.19 µM, and it significantly inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2). Lambertellin (1) also decreased the expression of pro-inflammatory cytokines IL-6 and IL-1β. The study of the mechanistic pathways revealed that lambertellin (1) exerts its anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophage cells by modulating the activation of the mitogen activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways. Therefore, lambertellin (1) could be a promising lead compound for the development of new anti-inflammatory drugs.  相似文献   

18.
It is well established that ecdysteroids play pivotal roles in the regulation of insect molting and metamorphosis. However, the mechanisms by which ecdysteroids regulate the growth and development of adult organs after pupation are poorly understood. Recently, we have identified insulin-like growth factor (IGF)-like peptides (IGFLPs), which are secreted after pupation under the control of 20-hydroxyecdysone (20E). In the silkmoth, Bombyx mori, massive amounts of Bombyx-IGFLP (BIGFLP) are present in the hemolymph during pupal-adult development, suggesting its importance in the regulation of adult tissue growth. Thus, we hypothesized that the growth and development of adult tissues including imaginal disks are regulated by the combined effects of BIGFLP and 20E. In this study, we investigated the growth-promoting effects of BIGFLP and 20E using the male genital disks of B. mori cultured ex vivo, and further analyzed the cell signaling pathways mediating hormone actions. We demonstrate that 20E induces the elongation of genital disks, that both hormones stimulate protein synthesis in an additive manner, and that BIGFLP and 20E exert their effects through the insulin/IGF signaling pathway and mitogen-activated protein kinase pathway, respectively. These results show that the growth and development of the genital disk are coordinately regulated by both BIGFLP and 20E.  相似文献   

19.
Mesenchymal stem cells (MSCs) are multipotent precursor cells originating from several adult connective tissues. MSCs possess the ability to self-renew and differentiate into several lineages, and are recognized by the expression of unique cell surface markers. Several lines of evidence suggest that various signal transduction pathways and their interplay regulate MSC differentiation. To that end, a critical player in regulating MSC differentiation is a group of proteins encoded by the Wnt gene family, which was previously known for influencing various stages of embryonic development and cell fate determination. As MSCs have gained significant clinical attention for their potential applications in regenerative medicine, it is imperative to unravel the mechanisms by which molecular regulators control differentiation of MSCs for designing cell-based therapeutics. It is rather coincidental that the functional outcome(s) of Wnt-induced signals share similarities with cellular redox-mediated networks from the standpoint of MSC biology. Furthermore, there is evidence for a crosstalk between Wnt and redox signalling, which begs the question whether Wnt-mediated differentiation signals involve the intermediary role of reactive oxygen species. In this review, we summarize the impact of Wnt signalling on multi-lineage differentiation of MSCs, and attempt to unravel the intricate interplay between Wnt and redox signals.  相似文献   

20.
Butein (2′,3,4,4′-tetrahydroxychalcone), a simple chalcone derivative, occurs in many unrelated genera including Butea Dahlia, Coreopsis and Searsia. It is a reputed food additive and a common ingredient of botanicals used in herbal medicine formulations, particularly in Asian countries. Although a simple polyphenol, this molecule exhibits a range of pharmacological properties, most notably acting as a potent protein tyrosine kinase inhibitor and as an antineoplastic agent. Researchers have convincingly demonstrated that butein inhibits the epidermal growth factor receptor in HepG2 cells and the tyrosine-specific protein kinase activities of the epidermal growth factor receptor. In addition, it also exhibits promising anti-inflammatory, antidiabetic, antinephritic, antithrombin, anti-angiogenic and hepatoprotective activities in various animal models. Although this molecule is endowed with an impressive list of biological properties, which have acted as scientific support for its commercialization, there are no review articles that coherently discuss various aspects of this chalcanoid. This review aims to explore the pharmacological relevance of butein, together with its structure–activity relationships and mechanisms of action. In addition, the occurrence, chemical synthesis and biosynthesis of butein are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号