首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host cell DNA is a critical impurity in downstream processing of enveloped viruses. Especially, DNA in the form of chromatin is often neglected. Endonuclease treatment is an almost mandatory step in manufacturing of viral vaccines. In order to find the optimal performer, four different endonucleases, two of them salt tolerant, were evaluated in downstream processing of recombinant measles virus. Endonuclease treatment was performed under optimal temperature conditions after clarification and before the purification by flow-through chromatography with a core shell chromatography medium: Capto™ Core 700. Virus infectivity was measured by TCID50. DNA and histone presence in process and purified samples was determined using PicoGreen™ assay and Western blot analysis using an anti-histone antibody, respectively. All tested endonucleases allowed the reduction of DNA content improving product purity. The salt-tolerant endonucleases SAN and M-SAN were more efficient in the removal of chromatin compared with the non-salt-tolerant endonucleases Benzonase® and DENARASE®. Removal of chromatin using M-SAN was also possible without the addition of extra salt to the cell culture supernatant. The combination of the endonuclease treatment, using salt-tolerant endonucleases with flow-through chromatography, using core–shell particles, resulted in high purity and purification efficiency. This strategy has all features for a platform downstream process of recombinant measles virus and beyond.  相似文献   

2.
A procedure was established whereby most of the major viral proteins were isolated to apparent homogeneity in biologically and immunologically active forms from a single batch of avian sarcoma virus QV2. For the initial step of purification, gently disrupted virions were fractionated by CsCl centrifugation into envelope proteins, RNA-dependent DNA polymerase, and viral core proteins. Further purification of envelope glycoproteins and DNA polymerase was performed by affinity chromatography on agarose columns cross-linked with plant lectins and poly(C), respectively. On the other hand, core proteins were fractionated by a combination of gel filtration and ion-exchange column chromatography into components p27, p19, and p15. The core protein p15 thus isolated retained proteolytic activity even after storage for 6 months. The present study also demonstrated that QV2 p19 is structurally altered from the corresponding protein of avian myeloblastosis virus (AMV), a reference avian leukosis-sarcoma virus having a well-characterized polypeptide composition.  相似文献   

3.
A variety of gel filtration resins (Sephadex G200 and G150; Sepharose 6B, 4B and 2B; Bio-Gel P100, P200; and Toyopearl HW 55, HW 65, and HW 75) were evaluated for their efficacy in removing PCR-inhibitory substances from feedlot soil DNA crude extracts using gravity-flow disposable columns. Sepharose resins demonstrated the best properties for DNA purification when compared to other gel filtration resins, and Sepharose 2B was the most efficient purification resin based upon flow rate and the elution of DNA and humic acids from the columns. A method for purifying large solution volumes of DNA extract economically was also developed using low-cost disposable Disposaflex columns. Crude DNA extracts of cattle feedlot soil and aquifer sediment impacted by animal and human wastes were easily purified using the Disposaflex column method regardless of whether a gentle chemical lysis or a bead mill homogenization DNA extraction method was employed.  相似文献   

4.
《Biologicals》2014,42(4):184-190
Various chromatographic procedures are used during the purification and manufacture of plasma products such as coagulation factors. These steps contribute to the overall safety of such products by removing potential virus contamination. Virus removal by two affinity chromatography procedures, i.e. monoclonal antibody chromatography and metal chelate chromatography (immobilised metal ion affinity chromatography), used during the manufacture of the high purity factor VIII (Replenate®) and factor IX (Replenine®-VF), respectively, has been investigated. In addition, as these columns are recycled after use, the effectiveness of the sanitisation procedures for preventing possible cross-contamination, has also been investigated.Both chromatographic steps proved effective for eliminating a range of model enveloped and non-enveloped viruses by 4 to >6 and 5 to >8 log for the monoclonal and metal chelate columns, respectively. The effectiveness of the relatively mild column sanitisation conditions used, i.e. ethanol for factor IX and acetic acid for factor VIII, was confirmed using non-spiked column runs. The chemicals used contributed to virus elimination by inactivation and/or by physical removal of the virus. In summary, these studies demonstrate that potential virus contamination between chromatographic runs can be prevented when an effective column recycling and sanitisation procedure is included.  相似文献   

5.
Continuous Vero cell lines are more suitable for large-scale production of rabies vaccine. The purification of Vero cell-derived rabies vaccine is critical because of the residual cellular DNA and serum proteins. The perfection of techniques using column chromatography with different matrix material, gel filtration and zonal centrifugation is of paramount importance for the optimal purification of rabies vaccine, leaving minimal residual cellular DNA, below the permissible level of 100 pg per dose and serum protein content of 1 ppm. In this study the potency, immunogenicity and safety of Vero cell-derived rabies vaccines were compared following purification by densely or loosely packed DEAE-sepharose CL-6B columns with different bed heights or by zonal centrifugation. The optimal virus recovery and maximum removal of substrate DNA and serum proteins were achieved only when the sepharose CL-6B column bed height was maintained at a thickness of 2-2.5 cm. The rabies virus material was purified by layering over the matrix without applying pressure. DEAE-sepharose CL-6B column purification using a simplified, cost effective technique as described in this study enhances the antigen yield by 50% in comparison with zonal purification.  相似文献   

6.
The theoretical potential for virus transmission by monoclonal antibody based therapeutic products has led to the inclusion of appropriate virus reduction steps. In this study, virus elimination by the chromatographic steps used during the purification process for two (IgG‐1 & ?3) monoclonal antibodies (MAbs) have been investigated. Both the Protein G (>7log) and ion‐exchange (5 log) chromatography steps were very effective for eliminating both enveloped and non‐enveloped viruses over the life‐time of the chromatographic gel. However, the contribution made by the final gel filtration step was more limited, i.e., 3 log. Because these chromatographic columns were recycled between uses, the effectiveness of the column sanitization procedures (guanidinium chloride for protein G or NaOH for ion‐exchange) were tested. By evaluating standard column runs immediately after each virus spiked run, it was possible to directly confirm that there was no cross contamination with virus between column runs (guanidinium chloride or NaOH). To further ensure the virus safety of the product, two specific virus elimination steps have also been included in the process. A solvent/detergent step based on 1% triton X‐100 rapidly inactivating a range of enveloped viruses by >6 log inactivation within 1 min of a 60 min treatment time. Virus removal by virus filtration step was also confirmed to be effective for those viruses of about 50 nm or greater. In conclusion, the combination of these multiple steps ensures a high margin of virus safety for this purification process. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1341–1347, 2014  相似文献   

7.
Silica columns are among the most used DNA purification systems, allowing a good yield of high-quality nucleic acids without organic extractions. Silica column regeneration protocols reported up to now to remove DNA traces are time-consuming, and their effectiveness on genomic DNA has not been demonstrated. Here we report a very rapid regeneration procedure that ensures no DNA carryover, independent of its size, without impairing column efficiency. The method takes advantage of the improved DNA removal by low concentrations of Triton X-100.  相似文献   

8.
Ion-exchange chromatography is the standard technique used for plasmid DNA purification, an essential molecular biology procedure. Non-ionic detergents (NIDs) have been used for plasmid DNA purification, but it is unclear whether Hofmeister series salts (HSS) change the solubility and phase separation properties of specific NIDs, enhancing plasmid DNA purification. After scaling-up NID-mediated plasmid DNA isolation, we established that NIDs in HSS solutions minimize plasmid DNA contamination with protein. In addition, large-scale NID/HSS solutions eliminated lipopolysaccharides (LPS) contamination of plasmid DNA more effectively than Qiagen ion-exchange columns. Large-scale NID isolation/NID purification generated increased yields of high-quality DNA compared to alkali isolation/column purification. This work characterizes how HSS enhance NID-mediated plasmid DNA purification, and demonstrates that NID phase transition is not necessary for LPS removal from plasmid DNA. Specific NIDs such as IGEPAL CA-520 can be utilized for rapid, inexpensive, and efficient laboratory-based large-scale plasmid DNA purification, outperforming Qiagen-based column procedures.  相似文献   

9.
Human erythropoietin (hEpo) production requires mammalian cells able to make complex post-translational modifications to guaranty its biological activity. As mammalian cell can be reservoir of pathogenic viruses and several animal origin components are usually used in the cultivation of mammalian cells, hEpo contamination with viruses is something of great concern. As consequence, this study investigated the viral removal and inactivation capacity of a recombinant-hEpo (rec-hEpo) purification process. Canine parvovirus, Human poliovirus type-2, Bovine viral diarrhea virus and Human immunodeficiency virus type-1 were used for measuring process viral removal and inactivation capacities. In conclusion, this study corroborated that the assessed rec-hEpo purification process has enough capacity (5.0–19.4 Logs) for removing and inactivating these model viruses and sodium hydroxide demonstrated to be a robust sanitization solution for chromatography columns (5.0 (PV-2)-6.7 (CPV) Logs).  相似文献   

10.
Extreme overloading of HPLC columns with sample can create a condition of binding site saturation causing competition and displacement among solutes during column elution. This has been termed solute-displacement chromatography (SD-HPLC). We present an example of this phenomenon for the preparative fractionation and purification of restriction fragments of almost identical size (1337 and 1388 bp) which cannot be resolved by agarose gel electrophoresis. Standard analytical ion-exchange HPLC chromatography failed to separate these fragments from each other and from an unexpectedly early eluting pUC-derived vector fragment of 2.7 kbp. We demonstrate that by intentional overloading of the small (4.6 x 35 mm) non-porous TSK-DEAE HPLC column, hundreds of micrograms of DNA restriction fragments could be resolved and purified in a single HPLC run of less than 30 minutes.  相似文献   

11.
This work addresses the functional properties of the core-shell resins Capto Core 400 and 700 for a broad range of proteins spanning 66.5 to 660 kDa in molecular mass, including bovine serum albumin (BSA) in monomer and dimer form, fibronectin, thyroglobulin, and BSA conjugates with 10 and 30 kDa poly(ethylene glycol) chains. Negatively charged latex nanoparticles (NPs) with nominal diameters of 20, 40, and 100 nm are also studied as surrogates for bioparticles. Protein binding and its trends with respect to salt concentration depend on the protein size and are different for the two agarose-based multimodal resins. For the smaller proteins, the amount of protein bound over practical time scales is limited by the resin surface area and is larger for Capto Core 400 compared with Capto Core 700. For the larger proteins, diffusion is severely restricted in Capto Core 400, resulting in lower binding capacities than those observed for Capto Core 700 despite the larger surface area. Adding 500 mM NaCl reduces the local bound protein concentration and diffusional hindrance resulting in higher binding capacities for the large proteins in Capto Core 400 compared with low ionic strength conditions. The NPs are essentially completely excluded from the Capto Core 400 pores. However, 20 and 40 nm NPs bind significantly to Capto Core 700, further hindering protein diffusion. A model is provided to predict the dynamic binding capacities as a function of residence time.  相似文献   

12.
The large-scale purification of plasmid DNA was achieved using fast protein liquid chromatography on a Hi-Load Q Sepharose column. This method allows for the purification of plasmids starting from crude plasmid DNA, prepared by a simple alkaline lysis procedure, to pure DNA in less than 5 h. In contrast to the previously described plasmid purification methods of CsCl gradient centrifugation or high-pressure liquid chromatography, this method does not require the use of any hazardous or expensive chemicals. More than 100 plasmids varying in size from 3 to 15 kb have been purified using this procedure. A Mono Q Sepharose column was initially used to purify plasmids smaller than 8.0 kb; however, a Hi-Load Q Sepharose column proved more effective with plasmids larger than 8 kb. The loading of plasmids larger than 8 kb on the Mono Q column resulted in a high back pressure and the plasmid DNA could not be eluted from the column. Thus, for routine purification we utilize the Hi-Load Q Sepharose column. Plasmids purified by this method had purity, yield, and transfection efficiency in mammalian cells similar to those of plasmids purified by CsCl density gradient centrifugation.  相似文献   

13.
Membrane chromatography has already proven to be a powerful alternative to polishing columns in flow‐through mode for contaminant removal. As flow‐through utilization has expanded, membrane chromatography applications have included the capturing of large molecules, including proteins such as IgGs. Such bind‐and‐elute applications imply the demand for high binding capacity and larger membrane surface areas as compared to flow‐through applications. Given these considerations, a new Sartobind Phenyl? membrane adsorber was developed for large‐scale purification of biomolecules based on hydrophobic interaction chromatography (HIC) principles. The new hydrophobic membrane adsorber combines the advantages of membrane chromatography—virtually no diffusion limitation and shorter processing time—with high binding capacity for proteins comparable to that of conventional HIC resins as well as excellent resolution. Results from these studies confirmed the capability of HIC membrane adsorber to purify therapeutic proteins with high dynamic binding capacities in the range of 20 mg‐MAb/cm3‐membrane and excellent impurity reduction. In addition the HIC phenyl membrane adsorber can operate at five‐ to ten‐fold lower residence time when compared to column chromatography. A bind/elute purification step using the HIC membrane adsorber was developed for a recombinant monoclonal antibody produced using the PER.C6® cell line. Loading and elution conditions were optimized using statistical design of experiments. Scale‐up is further discussed, and the performance of the membrane adsorber is compared to a traditional HIC resin used in column chromatography. Biotechnol. Bioeng. 2010; 105: 296–305. © 2009 Wiley Periodicals, Inc.  相似文献   

14.
A high-throughput screen (HTS) was developed to evaluate the selectivity of various hydrophobic interaction chromatography (HIC) resins for separating a mAb from aggregate species. Prior to the resin screen, the solubility of the protein was assessed to determine the allowable HIC operating region by examining 384 combinations of pH, salt, and protein concentration. The resin screen then incorporated 480 batch-binding and elution conditions with eight HIC resins in combination with six salts. The results from the screen were reproducible, and demonstrated quantitative recovery of the mAb and aggregate. The translation of the HTS batch-binding data to lab-scale chromatography columns was tested for four conditions spanning the range of product binding and selectivity. After accounting for the higher number of theoretical plates in the columns, the purity and recovery of the lab-scale column runs agreed with the HTS results demonstrating the predictive power of the filterplate system. The HTS data were further analyzed by the calculation of pertinent thermodynamic parameters such as the partition coefficient, K(P), and the separation factor, alpha. The separation factor was used to rank the purification capabilities of the resin and salt conditions explored.  相似文献   

15.
A method is described for the purification of the dye azure B in quantities sufficient for biological staining experiments on a larger scale. The method is based on the use of column chromatography. Two columns are employed. In column A with silica gel as adsorbent the azure B fraction is isolated from a suitable substrate ('technical' azure B gained by a modification of Bernthsen's synthesis of methylene blue, or plychrome methylene blue) using an acetate-formate mixture as eluent. In column B, on an Amberlite polyineric adsorbent (XAD-2) the acetate-formate anions are exchanged for chloride. Regeneration of both columns is possible: KMnO4, Na2S2O4 and water are run through column A, 5% NaOH, methanol and water through column B. Purification of azure B on economic terms is thus attained. The opinion is expressed that this method is also applicable to the purification of other cationic dyes.  相似文献   

16.
Viral clearance studies for na?ve and maximally cycled chromatographic resins used for cGMP recombinant protein production are reviewed for three products, comprising 10 different chromatographic steps, including affinity, ion exchange, immobilized metal ion affinity, and hydrophobic interaction modes. Thirty-two separate studies were conducted (over 90 runs in total). No consistent reductions in model virus clearance were observed with used resins. The results address the reproducibility of virus clearance studies conducted by different scientists over several years at multiple contract labs. The log reduction values (LRVs) are typically within 0.5 LRVs for new and used resin, but varied as much as 2 LRVs for resins showing no functional deterioration. This relatively large difference is not believed to reflect resin changes, but highlights the challenges encountered in modeling column clearance. Production column performance and cleaning efficacy are demonstrated for these steps by trending mock runs, impurity removal and product recovery. No deterioration in cGMP column performance is seen over the established resin lifetimes, confirming that the resin regeneration and sanitization procedures restore the resins to a suitable initial state without damage. It is proposed that for some chromatography steps, the combination of lab-scale cycling studies confirming consistent performance throughout the resin lifetime and monitoring of cGMP manufacturing preclude the need for virus clearance studies on maximally cycled resin.  相似文献   

17.
A method is described for the purification of the dye azure B in quantities sufficient for biological staining experiments on a larger scale. The method is based on the use of column chromatography. Two columns are employed. In column A with silica gel as adsorbent the azure B fraction is isolated from a suitable substrate ('technical' azure B gained by a modification of Bernthsen's synthesis of methylene blue, or polychrome methylene blue) using an acetate-formate mixture as eluent. In column B, on an Amberlite polymeric adsorbent (XAD-2) the acetate-formate anions are exchanged in chloride. Regeneration of both columns is possible: KMnO4, Na2S2O4 and water are run through column A; 5% NaOH, methanol and water through column B. Purification of azure B on economic terms is thus attained. The opinion is expressed that this method is also applicable to the purification of other cationic dyes.  相似文献   

18.
Sequences of the novel gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV) have been described in human prostate cancer tissue, although the amounts of DNA are low. Furthermore, XMRV sequences and polytropic (p) murine leukemia viruses (MLVs) have been reported in patients with chronic fatigue syndrome (CFS). In assessing the prevalence of XMRV in prostate cancer tissue samples we discovered that eluates from naïve DNA purification columns, when subjected to PCR with primers designed to detect genomic mouse DNA contamination, occasionally gave rise to amplification products. Further PCR analysis, using primers to detect XMRV, revealed sequences derived from XMRV and pMLVs from mouse and human DNA and DNA of unspecified origin. Thus, DNA purification columns can present problems when used to detect minute amounts of DNA targets by highly sensitive amplification techniques.  相似文献   

19.
Weak partitioning chromatography (WPC) is an isocratic chromatographic protein separation method performed under mobile phase conditions where a significant amount of the product protein binds to the resin, well in excess of typical flowthrough operations. The more stringent load and wash conditions lead to improved removal of more tightly binding impurities, although at the cost of a reduction in step yield. The step yield can be restored by extending the column load and incorporating a short wash at the end of the load stage. The use of WPC with anion exchange resins enables a two-column cGMP purification platform to be used for many different mAbs. The operating window for WPC can be easily established using high throughput batch-binding screens. Under conditions that favor very strong product binding, competitive effects from product binding can give rise to a reduction in column loading capacity. Robust performance of WPC anion exchange chromatography has been demonstrated in multiple cGMP mAb purification processes. Excellent clearance of host cell proteins, leached Protein A, DNA, high molecular weight species, and model virus has been achieved.  相似文献   

20.
During human immunodeficiency virus type-1 (HIV-1) virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号