首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cell leakproof porous poly(DL ‐lactic‐co‐glycolic acid) (PLGA)‐collagen hybrid scaffold was prepared by wrapping the surfaces of a collagen sponge except the top surface for cell seeding with a bi‐layered PLGA mesh. The PLGA‐collagen hybrid scaffold had a structure consisting of a central collagen sponge formed inside a bi‐layered PLGA mesh cup. The hybrid scaffold showed high mechanical strength. The cell seeding efficiency was 90.0% when human mesenchymal stem cells (MSCs) were seeded in the hybrid scaffold. The central collagen sponge provided enough space for cell loading and supported cell adhesion, while the bi‐layered PLGA mesh cup protected against cell leakage and provided high mechanical strength for the collagen sponge to maintain its shape during cell culture. The MSCs in the hybrid scaffolds showed round cell morphology after 4 weeks culture in chondrogenic induction medium. Immunostaining demonstrated that type II collagen and cartilaginous proteoglycan were detected in the extracellular matrices. Gene expression analyses by real‐time PCR showed that the genes encoding type II collagen, aggrecan, and SOX9 were upregulated. These results indicated that the MSCs differentiated and formed cartilage‐like tissue when being cultured in the cell leakproof PLGA‐collagen hybrid scaffold. The cell leakproof PLGA‐collagen hybrid scaffolds should be useful for applications in cartilage tissue engineering. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
Summary Here, we describe assay systems that utilize serum-free defined media to evaluate capillary morphogenesis during human endothelial cell (EC) invasion of three-dimensional collagen matrices. ECs invade these matrices over a 1–3-d period to form capillary tubes. Blocking antibodies to the α2β1 integrin interfere with invasion and morphogenesis while other integrin blocking antibodies do not. Interestingly, we observed increased invasion of ECs toward a population of underlying ECs undergoing morphogenesis. In addition, we have developed assays on microscope slides that display the invasion process horizontally, thereby enhancing our ability to image these events. Thus far, we have observed intracellular vacuoles that appear to regulate the formation of capillary lumens, and extensive cell processes that facilitate the interconnection of ECs during morphogenic events. These assays should enable further investigation of the morphologic steps and molecular events controlling human capillary tube formation in three-dimensional extracellular matrices.  相似文献   

3.
A novel method to quantify cell migration through potential tissue engineering 3-d scaffolds is described. The migration assay uses a dot-blotting apparatus into which the tissue engineering matrix is placed on top of a nitrocellulose membrane. This assay was used to evaluate human dermal fibroblast migration through four porcine collagen matrices with varying pore diameters and pitch lengths. Fibroblasts were placed on the matrix surface, at between 1 ×103–3 × 103 cells mm–2, and left for 18 h to allow migration. The nitrocellulose membrane was stained with haematoxylin, the membrane digitised and the pixel intensity of the stained cells quantified. We showed that for all matrix variants, migration was more effective with a higher initial seeding density. The application of varying initial cell densities resulted in the greatest extent of cell migration through the matrix variant with pores of 30 m diameter and 400 m pitch length (i.e. 10.3% migration at 1 ×103 cells mm–2). This method was coupled with confocal microscopy to evaluate the depth of cell migration within the matrix. At a depth of 20 m cell numbers were similar to those on the matrix surface: at a depth of 100 m only a few cells were observed.  相似文献   

4.
Triglyceride-rich lipoprotein (TGRL) lipolysis products provide a pro-inflammatory stimulus that can alter endothelial barrier function. To probe the mechanism of this lipolysis-induced event, we evaluated the pro-inflammatory potential of lipid classes derived from human postprandial TGRL by lipoprotein lipase (LpL). Incubation of TGRL with LpL for 30 min increased the saturated and unsaturated FFA content of the incubation solutions significantly. Furthermore, concentrations of the hydroxylated linoleates 9-hydroxy ocatadecadienoic acid (9-HODE) and 13-HODE were elevated by LpL lipolysis, more than other measured oxylipids. The FFA fractions elicited pro-inflammatory responses inducing TNFalpha and intracellular adhesion molecule expression and reactive oxygen species (ROS) production in human aortic endothelial cells (HAECs). The FFA-mediated increase in ROS was blocked by both the cytochrome P450 2C9 inhibitor sulfaphenazole and NADPH oxidase inhibitors. Compared with linoleate, 13-HODE was found to be a more potent inducer of ROS production in HAECs, an activity that was insensitive to both NADPH oxidase and cytochrome P450 inhibitors. Therefore, although the oxidative metabolism of FFA in endothelial cells can produce inflammatory responses, TGRL lipolysis can also release preformed mediators of oxidative stress (e.g., HODEs) that may influence endothelial cell function in vivo by stimulating intracellular ROS production.  相似文献   

5.
Tissue engineering using living cells is emerging as an alternative to tissue or organ transplantation. The adult mesenchymal stem cells can be differentiated into multilineage cells, such as adipocytes, chondrocytes, or osteoblasts when cultured with specific growth factors. In the present investigation, we have studied the effect of honeycomb collagen scaffolds for the adhesion, differentiation and proliferation of bone marrow-derived mesenchymal stem cells into osteoblasts. Mesenchymal stem cells were isolated from 6-week old albino rat femur bone marrow, and cultured in alpha-MEM medium without beta-glycerophosphate and dexamethasone. Honeycomb collagen discs were prepared from bovine dermal atelocollagen, cross-linked by UV-irradiation and sterilized by heat. The honeycomb discs were placed on the culture dishes before seeding the stem cells. The cells attached quickly to the honeycomb collagen scaffold, differentiated and proliferated into osteoblasts. The differentiated osteoblasts were characterized by morphological examination and alkaline phosphatase activity. The osteoblasts also synthesized calcium-deficient hydroxyapatite (pseudo-hydroxyapatite) crystals in the culture. The mineralization was confirmed by Von Kossa staining and the crystals were analyzed by X-ray diffraction. Light microscopy and DNA measurements showed that the differentiated osteoblasts multiplied into several layers on the honeycomb collagen scaffold. The results demonstrated that the honeycomb collagen sponge is an excellent scaffold for the differentiation and proliferation of mesenchymal stem cells into osteoblasts. The data further proved that honeycomb collagen is an effective substrate for tissue engineering applications, and is very useful in the advancing field of stem cell technology and cell-based therapy.  相似文献   

6.
Tissue engineering promises to be an effective strategy that can overcome the lacuna existing in the current pharmacological and interventional therapies and heart transplantation. Heart failure continues to be a major contributor to the morbidity and mortality across the globe. This may be attributed to the limited regeneration capacity after the adult cardiomyocytes are terminally differentiated or injured. Various strategies involving acellular scaffolds, stem cells, and combinations of stem cells, scaffolds and growth factors have been investigated for effective cardiac tissue regeneration. Recently, injectable hydrogels have emerged as a potential candidate among various categories of biomaterials for cardiac tissue regeneration due to improved patient compliance and facile administration via minimal invasive mode that treats complex infarction. This review discusses in detail on the advances made in the field of injectable materials for cardiac tissue engineering highlighting their merits over their preformed counterparts.  相似文献   

7.
The requirements for engineering clinically sized cardiac constructs include medium perfusion (to maintain cell viability throughout the construct volume) and the protection of cardiac myocytes from hydrodynamic shear. To reconcile these conflicting requirements, we proposed the use of porous elastomeric scaffolds with an array of channels providing conduits for medium perfusion, and sized to provide efficient transport of oxygen to the cells, by a combination of convective flow and molecular diffusion over short distances between the channels. In this study, we investigate the conditions for perfusion seeding of channeled constructs with myocytes and endothelial cells without the gel carrier we previously used to lock the cells within the scaffold pores. We first established the flow parameters for perfusion seeding of porous elastomer scaffolds using the C2C12 myoblast line, and determined that a linear perfusion velocity of 1.0 mm/s resulted in seeding efficiency of 87% ± 26% within 2 hours. When applied to seeding of channeled scaffolds with neonatal rat cardiac myocytes, these conditions also resulted in high efficiency (77.2% ± 23.7%) of cell seeding. Uniform spatial cell distributions were obtained when scaffolds were stacked on top of one another in perfusion cartridges, effectively closing off the channels during perfusion seeding. Perfusion seeding of single scaffolds resulted in preferential cell attachment at the channel surfaces, and was employed for seeding scaffolds with rat aortic endothelial cells. We thus propose that these techniques can be utilized to engineer thick and compact cardiac constructs with parallel channels lined with endothelial cells. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

8.
Oxidized low-density lipoprotein (ox-LDL) has been shown to alter the migratory and proliferative activities of the vascular endothelial cells (EC) in response to serum and growth factors. The mechanism underlying the antiproliferative effect of ox-LDL on vascular EC has not been fully elucidated. In this report, we show that exposure of vascular EC to ox-LDL results in a marked reduction of the membrane-associated Ras protein. Further study shows that in ox-LDL-treated EC, reduction of the membrane-associated Ras protein is correlated with a reduced amount of active Ras (Ras-guanosine triphosphate), indicating that the Ras signaling pathway is attenuated. The attenuation of the Ras signaling pathway in ox-LDL-treated EC may thus be responsible for the retarded response to the mitogenic stimulation of serum and growth factors.  相似文献   

9.
10.
11.
In order to provide a suitable source of cells for lymphatic tissue engineering, the present study was designed to investigate techniques for harvesting and cryopreservation of human dermal lymphatic endothelial cells (LECs) in vitro. The LECs were isolated from children’s foreskins and then cultured in endothelial growth medium-2 MV (EGM-2-MV) with 5% FBS. The second passage LECs were suspended in cryopreservation solution containing 40% FBS and 10% Me2SO in EGM-2-MV, cooled to −80 °C at about 1 °C/min and stored in liquid nitrogen. Samples were thawed quickly in a 37 °C water bath, and the cryoprotectant was removed by serial elution. The membrane integrity of thawed LECs was determined by trypan blue staining exclusion, and their proliferation was evaluated using the MTT method. The expanded cells of two groups were identified using immunofluorescence staining and RT-PCR with lymphatic-specific markers such as Podoplanin and VEGFR-3. Uptake of fluorescent DiI-Ac-LDL and microtubular formation in three-dimensional cultures were used to detect the function of LECs. Flow cytometry was applied to identify cells and to measure the apoptosis rate as well. Cryopreservation resulted in a retrieval of 67 ± 4% and an intact cell rate of 80 ± 3%. The early apoptosis rate of thawed LECs (9.15 ± 0.34%) was higher than that of fresh control LECs (5.31 ± 0.23%). The growth curves of thawed LECs were similar to those of fresh LECs. The thawed LECs were propagated for at least 6-7 passages without alterations in phenotype and function. Highly purified LECs can be isolated by immunomagnetic beads from human dermis. The cryopreserved/thawed and recultivated LECs are proven to have high vitality and growth potential in vitro and may be considered suitable seed cells for lymphatic tissue engineering.  相似文献   

12.
Tissue engineering is a clinically driven field and has emerged as a potential alternative to organ transplantation. The cornerstone of successful tissue engineering rests upon two essential elements: cells and scaffolds. Recently, it was found that stem cells have unique capabilities of self-renewal and multilineage differentiation to serve as a versatile cell source, while nanomaterials have lately emerged as promising candidates in producing scaffolds able to better mimic the nanostructure in natural extracellular matrix and to efficiently replace defective tissues. This article, therefore, reviews the key developments in tissue engineering, where the combination of stem cells and nanomaterial scaffolds has been utilized over the past several years. We consider the high potential, as well as the main issues related to the application of stem cells and nanomaterial scaffolds for a range of tissues including bone, cartilage, nerve, liver, eye etc. Promising in vitro results such as efficient attachment, proliferation and differentiation of stem cells have been compiled in a series of examples involving different nanomaterials. Furthermore, the merits of the marriage of stem cells and nanomaterial scaffolds are also demonstrated in vivo, providing early successes to support subsequent clinical investigations. This progress simultaneously drives mechanistic research into the mechanotransduction process responsible for the observations in order to optimize the process further. Current understanding is chiefly reported to involve the interaction of stem cells and the anchoring nanomaterial scaffolds by activating various signaling pathways. Substrate surface characteristics and scaffold bulk properties are also reported to influence not only short term stem cell adhesion, spreading and proliferation, but also longer term lineage differentiation, functionalization and viability. It is expected that the combination of stem cells and nanomaterials will develop into an important tool in tissue engineering for the innovative treatment of many diseases.  相似文献   

13.
Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.  相似文献   

14.
Vascularization is a key process in skin tissue engineering, determining the biological function of artificial skin implants. Hence, efficient vascularization strategies are a major prerequisite for the safe application of these implants in clinical practice. Current approaches include (i) modification of structural and physicochemical properties of dermal scaffolds, (ii) biological scaffold activation with growth factor-releasing systems or gene vectors, and (iii) generation of prevascularized skin substitutes by seeding scaffolds with vessel-forming cells. These conventional approaches may be further supplemented by emerging strategies, such as transplantation of adipose tissue-derived microvascular fragments, 3D bioprinting and microfluidics, miRNA modulation, cell sheet engineering, and fabrication of photosynthetic scaffolds. The successful translation of these vascularization strategies from bench to bedside may pave the way for a broad clinical implementation of skin tissue engineering.  相似文献   

15.
A regenerative medicine approach to restore the morphology and function of the diaphragm in congenital diaphragmatic hernia is especially challenging because of the position and flat nature of this organ, allowing cell ingrowth primarily from the perimeter. Use of porous collagen scaffolds for the closure of surgically created diaphragmatic defects in rats has been shown feasible, but better ingrowth of cells, specifically blood vessels and muscle cells, is warranted. To stimulate this process, heparin, a glycosaminoglycan involved in growth factor binding, was covalently bound to porous collagenous scaffolds (14%), with or without vascular endothelial growth factor (VEGF; 0.4 µg/mg scaffold), hepatocyte growth factor (HGF; 0.5 µg/mg scaffold) or a combination of VEGF + HGF (0.2 + 0.5 µg/mg scaffold). All components were located primarily at the outside of scaffolds. Scaffolds were implanted in the diaphragm of rats and evaluated after 2 and 12 weeks. No herniations or eventrations were observed, and in several cases, growth factor-substituted scaffolds showed macroscopically visible blood vessels at the lung site. The addition of heparin led to an accelerated ingrowth of blood vessels at 2 weeks. In all scaffold types, giant cells and immune cells were present primarily at the liver side of the scaffold, and immune cells and individual macrophages at the lung side; these cell types decreased in number from week 2 to week 12. The addition of growth factors did not influence cellular response to the scaffolds, indicating that further optimization with respect to dosage and release profile is needed.  相似文献   

16.
Tissue engineering scaffolds play a critical role in regulating the reconstructed human tissue development. Various types of scaffolds have been developed in recent years, including fibrous matrix and foam-like scaffolds. The design of scaffold materials has been investigated extensively. However, the design of physical structure of the scaffold, especially fibrous matrices, has not received much attention. This paper compares the different characteristics of fibrous and foam-like scaffolds, and reviews regulatory roles of important scaffold properties, including surface geometry, scaffold configuration, pore structure, mechanical property and bioactivity. Tissue regeneration, cell organization, proliferation and differentiation under different microstructures were evaluated. The importance of proper scaffold selection and design is further discussed with the examples of bone tissue engineering and stem cell tissue engineering. This review addresses the importance of scaffold microstructure and provides insights in designing appropriate scaffold structure for different applications of tissue engineering.  相似文献   

17.
Endothelial cells preserve vascular integrity in part by synthesizing type IV collagen for the basement membrane of blood vessels. Vitamin C, which at physiologic pH is largely the ascorbate mono-anion, both protects these cells from oxidant stress and is required for collagen synthesis. Therefore, cultured endothelial cells were used to correlate intracellular concentrations of ascorbate with its uptake and ability to stimulate collagen release into the culture medium. The kinetics and inhibitor specificity of ascorbate transport into EA.hy926 endothelial cells were similar to those observed in other cell types, indicative of a specific high affinity transport process. Further, transport of the vitamin generated intracellular ascorbate concentrations that were 80-100-fold higher than concentrations in the medium following overnight culture, and transport inhibition with sulfinpyrazone and phloretin partially prevented such ascorbate accumulation. On the other hand, low millimolar intracellular concentrations of ascorbate impaired its transport measured after overnight culture. Synthesis and release of type IV collagen into the culture medium was markedly stimulated by ascorbate in a time-dependent manner, and was saturable with increasing medium concentrations of the vitamin. Optimal rates of collagen synthesis required intracellular concentrations of the vitamin up to 2 mM. Since such concentrations can only be generated by the ascorbate transporter, these results show the necessity of transport for this crucial function of the vitamin in endothelium.  相似文献   

18.
Tissue engineers have achieved limited success so far in designing an ideal scaffold for aortic valve; scaffolds lack in mechanical compatibility, appropriate degradation rate, and microstructural similarity. This paper, therefore, has demonstrated a carbodiimide-based sequential crosslinking technique to prepare aortic valve extracellular matrix mimicking (ECM) hybrid scaffolds from collagen type I and hyaluronic acid (HA), the building blocks of heart valve ECM, with tailorable crosslinking densities. Swelling studies revealed that crosslinking densities of parent networks increased with increasing the concentration of the crosslinking agents whereas crosslinking densities of hybrid scaffolds averaged from those of parent collagen and HA networks. Hybrid scaffolds also offered a wide range of pore size (66-126 μm) which fulfilled the criteria for valvular tissue regeneration. Scanning electron microscopy and images of Alcian blue-Periodic acid Schiff stained samples suggested that our crosslinking technique yielded an ECM mimicking microstructure with interlaced bands of collagen and HA in the hybrid scaffolds. The mutually reinforcing networks of collagen and HA also resulted in increased bending moduli up to 1660 kPa which spanned the range of natural aortic valves. Cardio sphere-derived cells (CDCs) from rat hearts showed that crosslinking density affected the available cell attachment sites on the surface of the scaffold. Increased bending moduli of CDCs seeded scaffolds up to two folds (2-6 kPa) as compared to the non-seeded scaffolds (1 kPa) suggested that an increase in crosslinking density of the scaffolds could not only increase the in vitro bending modulus but also prevented its disintegration in the cell culture medium.  相似文献   

19.
20.
HeLa-S3 cells were analyzed for their ability to attach and spread on cell culture microcarriers that were made either positively or negatively charged with polymeric plastics or were coated with BSA, gelatin, fibronectin or laminin. The cells stuck to all microcarriers under low shear, i.e. low stirring conditions with similar rates of attachment. Except in the case of gelatin microcarriers where cells fully spread, cells did not or only partially spread on the others. Under high shear, cells attached with the following rates: positive = negative = gelatin = BSA greater than laminin greater than fibronectin. Cells detached from all but the gelatin and BSA coated beads. However, the cells did not fully spread on BSA beads. The observation that cells not only attached but also spread on gelatin beads indicated that gelatin could be a specific substratum adhesion protein while the other surfaces were 'non-specific'. It should be noted that neither antibodies to laminin nor fibronectin interfered with attachment to gelatin. Protein synthesis inhibitors reduced the attachment and spreading on gelatin beads under high but not low shear conditions. With low shear, attachment and spreading appeared normal. We concluded that the density of the cell surface attachment proteins was reduced by the protein synthesis inhibitors and there were not enough present to facilitate attachment under high shear. The results also indicated that protein synthesis was not essential for cell spreading. Proteolysis of the cell surface with low concentrations of trypsin abolished the attachment of cells to gelatin-coated beads. The reappearance of attachment ability took several hours and was inhibited by actinomycin-D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号