首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jaws are formed by cephalic neural crest (CNCCs) and mesodermal cells migrating to the first pharyngeal arch (PA1). A complex signaling network involving different PA1 components then establishes the jaw morphogenetic program. To gather insight on this developmental process, in this study, we analyze the teratogenic effects of brief (1–15 min) pulses of low doses of retinoic acid (RA: 0.25–2 µM) or RA agonists administered to early Xenopus laevis (X.l.) embryos. We show that these brief pulses of RA cause permanent craniofacial defects specifically when treatments are performed during a 6‐hr window (developmental stages NF15–NF23) that covers the period of CNCCs maintenance, migration, and specification. Earlier or later treatments have no effect. Similar treatments performed at slightly different developmental stages within this temporal window give rise to different spectra of malformations. The RA‐dependent teratogenic effects observed in Xenopus can be partially rescued by folinic acid. We provide evidence suggesting that in Xenopus, as in the mouse, RA causes craniofacial malformations by perturbing signaling to CNCCs. Differently from the mouse, where RA affects CNCCs only at the end of their migration, in Xenopus, RA has an effect on CNCCs during all the period ranging from their exit from the neural tube until their arrival in the PA1. Our findings provide a conceptual framework to understand the origin of individual facial features and the evolution of different craniofacial morphotypes. Birth Defects Res (Part B) 89:493–503, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
Proper craniofacial development requires the orchestrated integration of multiple specialized tissue interactions. Recent analyses suggest that craniofacial development is not dependent upon neural crest pre-programming as previously thought but is regulated by a more complex integration of cell and tissue interactions. In the absence of neural crest cells it is still possible to obtain normal arch patterning indicating that neural crest is not responsible for patterning all of arch development. The mesoderm, endoderm and surface ectoderm tissues play a role in the patterning of the branchial arches, and there is now strong evidence that Hoxa2 acts as a selector gene for the pathways that govern second arch structures.  相似文献   

3.
4.
The neural crest is a multipotent precursor population which ulimately generates much of the peripheral nervous system, epidermal pigment cells, and a variety of mesectodermal derivatives. Individual multipotent neural crest cells are capable of some self-renewing divisions, and based upon this criteria can be considered stem cells. Considerable progress has been made in recent years toward understanding how this important population of progenitor cells is initially established in the early embryo, and how cell-intrinsic and non-cell-instristic factors mediate their subsequent lineage segregation and differentiation. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 175–189, 1998  相似文献   

5.
Background information. RGM A (repulsive guidance molecule A) is a GPI (glycosylphosphatidylinositol)‐anchored glycoprotein which has repulsive properties on axons due to the interaction with its receptor neogenin. In addition, RGM A has been demonstrated to function as a BMP (bone morphogenetic protein) co‐receptor. Results. In the present study, we provide the first analysis of early RGM A and neogenin expression and function in Xenopus laevis neural development. Tissue‐specific RGM A expression starts at stage 12.5 in the anterior neural plate. Loss‐of‐function analyses suggest a function of RGM A and neogenin in regulating anterior neural marker genes, as well as eye development and neural crest cell migration. Furthermore, overexpression of RGM A leads to ectopic expression of neural crest cell marker genes. Conclusions. These data indicate that RGM A and neogenin have important functions during early neural development, in addition to their role during axonal guidance and synapse formation.  相似文献   

6.
7.
8.
Id proteins are negative regulators of basic helix-loop-helix gene products and participate in many developmental processes. We have evaluated the expression of Id2 in the developing chick heart and found expression in the cardiac neural crest, secondary heart field, outflow tract, inflow tract, and anterior parasympathetic plexus. Cardiac neural crest ablation in the chick embryo, which causes structural defects of the cardiac outflow tract, results in a significant loss of Id2 expression in the outflow tract. Id2 is also expressed in Xenopus neural folds, branchial arches, cardiac outflow tract, inflow tract, and splanchnic mesoderm. Ablation of the premigratory neural crest in Xenopus embryos results in abnormal formation of the heart and a loss of Id2 expression in the heart and splanchnic mesoderm. This data suggests that the presence of neural crest is required for normal Id2 expression in both chick and Xenopus heart development and provides evidence that neural crest is involved in heart development in Xenopus embryos.  相似文献   

9.
Craniofacial anomalies (CFAs) are a diverse group of disorders affecting the shapes of the face and the head. Malformation of the cranial base in humans leads CFAs, such as midfacial hypoplasia and craniosynostosis. These patients have significant burdens associated with breathing, speaking, and chewing. Invasive surgical intervention is the current primary option to correct these structural deficiencies. Understanding molecular cellular mechanism for craniofacial development would provide novel therapeutic options for CFAs. In this study, we found that enhanced bone morphogenetic protein (BMP) signaling in cranial neural crest cells (NCCs) (P0-Cre;caBmpr1a mice) causes premature fusion of intersphenoid synchondrosis (ISS) resulting in leading to short snouts and hypertelorism. Histological analyses revealed reduction of proliferation and higher cell death in ISS at postnatal day 3. We demonstrated to prevent the premature fusion of ISS in P0-Cre;caBmpr1a mice by injecting a p53 inhibitor Pifithrin-α to the pregnant mother from E15.5 to E18.5, resulting in rescue from short snouts and hypertelorism. We further demonstrated to prevent premature fusion of cranial sutures in P0-Cre;caBmpr1a mice by injecting Pifithrin-α through E8.5 to E18.5. These results suggested that enhanced BMP-p53-induced cell death in cranial NCCs causes premature fusion of ISS and sutures in time-dependent manner.  相似文献   

10.
The neural crest is a fascinating embryonic population unique to vertebrates that is endowed with remarkable differentiation capacity. Thought to originate from ectodermal tissue, neural crest cells generate neurons and glia of the peripheral nervous system, and melanocytes throughout the body. However, the neural crest also generates many ectomesenchymal derivatives in the cranial region, including cell types considered to be of mesodermal origin such as cartilage, bone, and adipose tissue. These ectomesenchymal derivatives play a critical role in the formation of the vertebrate head, and are thought to be a key attribute at the center of vertebrate evolution and diversity. Further, aberrant neural crest cell development and differentiation is the root cause of many human pathologies, including cancers, rare syndromes, and birth malformations. In this review, we discuss the current findings of neural crest cell ontogeny, and consider tissue, cell, and molecular contributions toward neural crest formation. We further provide current perspectives into the molecular network involved during the segregation of the neural crest lineage.  相似文献   

11.
12.
This review provides an overview of the state and future directions of development and pathology in the craniofacial complex in the context of Cranial Neural Crest Cells (CNCC). CNCC are a multipotent cell population that is largely responsible for forming the vertebrate head. We focus on findings that have increased the knowledge of gene regulatory networks and molecular mechanisms governing CNCC migration and the participation of these cells in tissue formation. Pathology due to aberrant migration or cell death of CNCC, termed neurocristopathies, is discussed in addition to craniosynostoses. Finally, we discuss tissue engineering applications that take advantage of recent advancements in genome editing and the multipotent nature of CNCC. These applications have relevance to treating diseases due directly to the failure of CNCC, and also in restoring tissues lost due to a variety of reasons. Birth Defects Research (Part C) 102:324–332, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals. Birth Defects Research (Part C) 102:187–209, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Summary: The migrating cranial neural crest cells of birds, fish, and mammals have been shown to form the membranous bones of the cranium and face. These findings have been extrapolated to suggest that all the dermal bones of the vertebrate exoskeleton are derived from the neural crest ectomesenchyme. However, only one group of extant animals, the Chelonians, has an extensive bony exoskeleton in the trunk. We have previously shown that the autapomorphic carapacial and plastron bones of the turtle shell arise from dermal intramembranous ossification. Here, we show that the bones of the plastron stain positively for HNK‐1 and PDGFRα and are therefore most likely of neural crest origin. This extends the hypothesis of the neural crest origin of the exoskeleton to include the turtle plastron. genesis 31:111–117, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

15.
16.
The neural crest is the name given to the strip of cells at the junction between neural and epidermal ectoderm in neurula‐stage vertebrate embryos, which is later brought to the dorsal neural tube as the neural folds elevate. The neural crest is a heterogeneous and multipotent progenitor cell population whose cells undergo EMT then extensively and accurately migrate throughout the embryo. Neural crest cells contribute to nearly every organ system in the body, with derivatives of neuronal, glial, neuroendocrine, pigment, and also mesodermal lineages. This breadth of developmental capacity has led to the neural crest being termed the fourth germ layer. The neural crest has occupied a prominent place in developmental biology, due to its exaggerated migratory morphogenesis and its remarkably wide developmental potential. As such, neural crest cells have become an attractive model for developmental biologists for studying these processes. Problems in neural crest development cause a number of human syndromes and birth defects known collectively as neurocristopathies; these include Treacher Collins syndrome, Hirschsprung disease, and 22q11.2 deletion syndromes. Tumors in the neural crest lineage are also of clinical importance, including the aggressive melanoma and neuroblastoma types. These clinical aspects have drawn attention to the selection or creation of neural crest progenitor cells, particularly of human origin, for studying pathologies of the neural crest at the cellular level, and also for possible cell therapeutics. The versatility of the neural crest lends itself to interlinked research, spanning basic developmental biology, birth defect research, oncology, and stem/progenitor cell biology and therapy. Birth Defects Research (Part C) 102:275–298, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
In the early part of the 20th century, J. P. Hill and K. P. Watson embarked on a comprehensive study of the development of the brain in Australian marsupials. Their work included series from three major groups: dasyurids, peramelids, and diprotodonts, covering early primitive streak through brain closure and folding stages. While the major part of the work was on the development of the brain, in the course of this work they documented that cellular proliferations from the neural plate provided much of the mesenchyme of the branchial arches. These proliferations are now known to be the neural crest. However, except for a very brief note, published shortly after Hill's death, this work was never published. In this study, I present Hill and Watson's work on the development of the early neural plate and the neural crest in marsupials. I compare their findings with published work on the South American marsupial, Monodelphis domestica and demonstrate that patterns reported in Monodelphis are general for marsupials. Further, using their data I demonstrate that in dasyurids, which are ultra-altricial at birth, the neural crest migrates early and in massive quantities, even relative to other marsupials. Finally, I discuss the historical context and speculate on reasons for why this work was unpublished. I find little support for ideas that Hill blocked publication because of loyalty to the germ layer theory. Instead, it appears primarily to have been a very large project that was simply orphaned as Watson and Hill pursued other activities.  相似文献   

18.
19.
The neural crest has long been regarded as one of the key novelties in vertebrate evolutionary history. Indeed, the vertebrate characteristic of a finely patterned craniofacial structure is intimately related to the neural crest. It has been thought that protochordates lacked neural crest counterparts. However, recent identification and characterization of protochordate genes such as Pax3/7, Dlx and BMP family members challenge this idea, because their expression patterns suggest remarkable similarity between the vertebrate neural crest and the ascidian dorsal midline epidermis, which gives rise to both epidermal cells and sensory neurons. The present paper proposes that the neural crest is not a novel vertebrate cell population, but may have originated from the protochordate dorsal midline epidermis. Therefore, the evolution of the vertebrate neural crest should be reconsidered in terms of new cell properties such as pluripotency, delamination-migration and the carriage of an anteroposterior positional value, key innovations leading to development of the complex craniofacial structure in vertebrates. Molecular evolutionary events involved in the acquisitions of these new cell properties are also discussed. Genome duplications during early vertebrate evolution may have played an important role in allowing delamination of the neural crest cells. The new regulatory mechanism of Hox genes in the neural crest is postulated to have developed through the acquisition of new roles by coactivators involved in retinoic acid signaling.  相似文献   

20.
Cardiac neural crest cells migrate into the pharyngeal arches where they support development of the pharyngeal arch arteries. The pharyngeal endoderm and ectoderm both express high levels of FGF8. We hypothesized that FGF8 is chemotactic for cardiac crest cells. To begin testing this hypothesis, cardiac crest was explanted for migration assays under various conditions. Cardiac neural crest cells migrated more in response to FGF8. Single cell tracing indicated that this was not due to proliferation and subsequent transwell assays showed that the cells migrate toward an FGF8 source. The migratory response was mediated by FGF receptors (FGFR) 1 and 3 and MAPK/ERK intracellular signaling. To test whether FGF8 is chemokinetic and/or chemotactic in vivo, dominant negative FGFR1 was electroporated into the premigratory cardiac neural crest. Cells expressing the dominant negative receptor migrated slower than normal cardiac neural crest cells and were prone to remain in the vicinity of the neural tube and die. Treating with the FGFR1 inhibitor, SU5402 or an FGFR3 function-blocking antibody also slowed neural crest migration. FGF8 over-signaling enhanced neural crest migration. Neural crest cells migrated to an FGF8-soaked bead placed dorsal to the pharynx. Finally, an FGF8 producing plasmid was electroporated into an ectopic site in the ventral pharyngeal endoderm. The FGF8 producing cells attracted a thick layer of mesenchymal cells. DiI labeling of the neural crest as well as quail-to-chick neural crest chimeras showed that neural crest cells migrated to and around the ectopic site of FGF8 expression. These results showing that FGF8 is chemotactic and chemokinetic for cardiac neural crest adds another dimension to understanding the relationship of FGF8 and cardiac neural crest in cardiovascular defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号