首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methotrexate (MTX) is widely used for the treatment of childhood acute lymphoblastic leukemia (ALL). The accumulation of MTX and its active metabolites, methotrexate polyglutamates (MTXPG), in ALL cells is an important determinant of its antileukemic effects. We studied 194 of 356 patients enrolled on St. Jude Total XV protocol for newly diagnosed ALL with the goal of characterizing the intracellular pharmacokinetics of MTXPG in leukemia cells; relating these pharmacokinetics to ALL lineage, ploidy and molecular subtype; and using a folate pathway model to simulate optimal treatment strategies. Serial MTX concentrations were measured in plasma and intracellular MTXPG concentrations were measured in circulating leukemia cells. A pharmacokinetic model was developed which accounted for the plasma disposition of MTX along with the transport and metabolism of MTXPG. In addition, a folate pathway model was adapted to simulate the effects of treatment strategies on the inhibition of de novo purine synthesis (DNPS). The intracellular MTXPG pharmacokinetic model parameters differed significantly by lineage, ploidy, and molecular subtypes of ALL. Folylpolyglutamate synthetase (FPGS) activity was higher in B vs T lineage ALL (p<0.005), MTX influx and FPGS activity were higher in hyperdiploid vs non-hyperdiploid ALL (p<0.03), MTX influx and FPGS activity were lower in the t(12;21) (ETV6-RUNX1) subtype (p<0.05), and the ratio of FPGS to γ-glutamyl hydrolase (GGH) activity was lower in the t(1;19) (TCF3-PBX1) subtype (p<0.03) than other genetic subtypes. In addition, the folate pathway model showed differential inhibition of DNPS relative to MTXPG accumulation, MTX dose, and schedule. This study has provided new insights into the intracellular disposition of MTX in leukemia cells and how it affects treatment efficacy.  相似文献   

2.
Methotrexate (MTX) and 6-mercaptopurine (6MP) are the most commonly used drugs in the therapy of childhood acute lymphoblastic leukaemia (ALL). The main genotoxic effect of MTX resulting from inhibition of thymidylate synthase is mis-incorporation of uracil into DNA, which is considered essential for the effectiveness of the Protocol M in ALL IC BFM 2002/EURO LB 2002 regimens. In this study, we investigated the level of basal and induced DNA damage as well as the effectiveness of DNA repair in lymphocytes of children with ALL at four time-points during therapy with MTX and 6MP. To assess DNA damage and the efficacy of DNA repair we used the modified alkaline comet assay with uracil DNA glycosylase (Udg) and endonuclease III (EndoIII). In addition, we examined the induction of apoptosis in the lymphocytes of the patients during treatment. Finally, we compared the activity of base-excision repair (BER), involved in removal of both uracil and oxidized bases from DNA in lymphocytes of children with ALL and lymphocytes of healthy children. BER efficiency was estimated in an in vitro assay with cellular extracts and plasmid substrates of heteroduplex DNA with an AP-site. Our results indicate that there is a significant decrease in the efficacy of DNA repair associated with an increased level of uracil in DNA and induction of apoptosis during therapy. Moreover, it was found that the BER capacity was decreased in the lymphocytes of ALL patients in contrast to that in lymphocytes of healthy children. Thus, we suggest that an impairment of the BER pathway may play a role in the pathogenesis and therapy of childhood ALL.  相似文献   

3.
Methotrexate (MTX) is a key agent for the treatment of childhood acute lymphoblastic leukemia (ALL). Increased MTX plasma concentrations are associated with a higher risk of adverse drug effects. ATP-binding cassette subfamily C member 2 (ABCC2) is important for excretion of MTX and its toxic metabolite. The ABCC2 −24C>T polymorphism (rs717620) reportedly contributes to variability of MTX kinetics. In the present study, we assessed the association between the ABCC2 −24C>T polymorphism and methotrexate (MTX) toxicities in childhood ALL patients treated with high-dose MTX. A total of 112 Han Chinese ALL patients were treated with high-dose MTX according to the ALL-Berlin-Frankfurt-Muenster 2000 protocol. Our results showed that presence of the −24T allele in ABCC2 gene led to significantly higher MTX plasma concentrations at 48 hours after the start of infusion, which would strengthen over repeated MTX infusion. The −24T allele in ABCC2 gene was significantly associated with higher risks of high-grade hematologic (leucopenia, anemia, and thrombocytopenia) and non-hematologic (gastrointestinal and mucosal damage/oral mucositis) MTX toxicities. This study provides the first evidence that the −24T allele in ABCC2 gene is associated with the severity of MTX toxicities, which add fresh insights into clinical application of high-dose MTX and individualization of MTX treatment.  相似文献   

4.

Background

Childhood acute lymphoblastic leukemia (ALL) is the most common cancer in children, and can now be cured in approximately 80% of patients. Nevertheless, drug resistance is the major cause of treatment failure in children with ALL. The drug methotrexate (MTX), which is widely used to treat many human cancers, is used in essentially all treatment protocols worldwide for newly diagnosed ALL. Although MTX has been extensively studied for many years, relatively little is known about mechanisms of de novo resistance in primary cancer cells, including leukemia cells. This lack of knowledge is due in part to the fact that existing in vitro methods are not sufficiently reliable to permit assessment of MTX resistance in primary ALL cells. Therefore, we measured the in vivo antileukemic effects of MTX and identified genes whose expression differed significantly in patients with a good versus poor response to MTX.

Methods and Findings

We utilized measures of decreased circulating leukemia cells of 293 newly diagnosed children after initial “up-front” in vivo MTX treatment (1 g/m2) to elucidate interpatient differences in the antileukemic effects of MTX. To identify genomic determinants of these effects, we performed a genome-wide assessment of gene expression in primary ALL cells from 161 of these newly diagnosed children (1–18 y). We identified 48 genes and two cDNA clones whose expression was significantly related to the reduction of circulating leukemia cells after initial in vivo treatment with MTX. This finding was validated in an independent cohort of children with ALL. Furthermore, this measure of initial MTX in vivo response and the associated gene expression pattern were predictive of long-term disease-free survival (p < 0.001, p = 0.02).

Conclusions

Together, these data provide new insights into the genomic basis of MTX resistance and interpatient differences in MTX response, pointing to new strategies to overcome MTX resistance in childhood ALL.Trial registrations: Total XV, Therapy for Newly Diagnosed Patients With Acute Lymphoblastic Leukemia, http://www.ClinicalTrials.gov (NCT00137111); Total XIIIBH, Phase III Randomized Study of Antimetabolite-Based Induction plus High-Dose MTX Consolidation for Newly Diagnosed Pediatric Acute Lymphocytic Leukemia at Intermediate or High Risk of Treatment Failure (NCI-T93-0101D); Total XIIIBL, Phase III Randomized Study of Antimetabolite-Based Induction plus High-Dose MTX Consolidation for Newly Diagnosed Pediatric Acute Lymphocytic Leukemia at Lower Risk of Treatment Failure (NCI-T93-0103D).  相似文献   

5.
Phenytoin is a widely used antiepileptic drug. However, hepatotoxicity is one of its adverse effects reported in some patients. The mechanism(s) by which phenytoin causes hepatotoxicity is not clear yet. This study was designed to evaluate the cytotoxic mechanism(s) of phenytoin toward rat hepatocytes (whose cytochrome P450 enzymes had been induced by Phenobarbital). Furthermore, the effect of taurine and/or melatonin on this toxicity was investigated. Cell death, reactive oxygen species (ROS) formation, lipid peroxidation (LPO), and mitochondrial depolarization were monitored as toxicity markers. Results showed that phenytoin caused an elevation in ROS formation, depletion of intracellular reduced glutathione, increase in cellular oxidized glutathione, enhancement of LPO, and mitochondrial damage. Taurine (1 mM) and/or melatonin (1 mM) administration decreased the intensity of cellular injury caused by phenytoin. This study suggests the protective role of taurine and/or melatonin against phenytoin‐induced cellular damage probably through their reactive radical scavenging properties and their effects on mitochondria.  相似文献   

6.
Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and L-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL.  相似文献   

7.
Leukemia or cancer of blood is a well-known cancer, which affects a range of people from newborns to the very old. It is a public health problem throughout the world. By way of treatment, due to the lack of specific anticancer therapies, common treatments of leukemia lead to severe side effects. Nonspecific anticancer drugs result in inhibition of normal cell growth and thereby their necrosis. Moreover, drug resistance is an additional problem, which stands in the way of leukemia treatment. Thus, finding new treatments for leukemia is essential. Melatonin, as a natural product, has been shown to be effective in a wide variety of diseases such as coronary heart disease, schizophrenia, chronic pain, and Alzheimer's disease. In addition, melatonin levels have been observed to be altered in different cancers, such as breast cancer, colorectal cancer endometrial cancer, and hematopoetical cancers. Anticancer features of melatonin such as pro-oxidation, apoptosis induction, antiangiogenesis property and metastasis and invasion inhibition suggest that this natural compound can be used as a potential agent in novel therapeutic strategies for cancers. Also, it has been reported that melatonin has positive and protective effects on different physiological reactions and in normal bone marrow cells suggesting effectiveness in leukemia therapy. Thus, the aim of our paper was to depict and summarize the main molecular targets of melatonin on leukemia models.  相似文献   

8.

Background

The tyrosine kinase receptor insulin-like growth factor 1 receptor (IGF-IR) contributes to the initiation and progression of many types of malignancies. We previously showed that IGF-2, which binds IGF-IR, is an extrinsic factor that supports the ex vivo expansion of hematopoietic stem cells (HSCs). We also demonstrated that IGF-IR is not required for HSC activity in vivo.

Methods and results

Here we investigated the role of IGF-IR in chronic myeloid leukemia (CML) using the retroviral BCR/ABL transplantation mouse model. Existing antibodies against IGF-IR are not suitable for flow cytometry; therefore, we generated a fusion of the human IgG Fc fragment with mutant IGF-2 that can bind to IGF-IR. We used this fusion protein to evaluate mouse primary hematopoietic populations. Through transplantation assays with IGF-IR+ and IGF-IR cells, we demonstrated that IGF-IR is expressed on all mouse HSCs. The expression of IGF-IR is much higher on CML cells than on acute lymphoblastic leukemia (ALL) cells. The depletion of IGF-IR expression in BCR/ABL+ cells led to the development of ALL (mostly T cell ALL) but not CML. Lack of IGF-IR resulted in decreased self-renewal of the BCR/ABL+ CML cells in the serial replating assay.

Conclusion

IGF-IR regulates the cell fate determination of BCR/ABL+ leukemia cells and supports the self-renewal of CML cells.  相似文献   

9.
Methotrexate (MTX), a folic acid antagonist, an effective chemotherapeutic agent is used in the treatment of a wide range of tumors and autoimmune diseases. Moreover, hepatotoxicity limits its clinical use. Several studies have already confirmed that the oxidative stress plays a major role in the pathogenesis of MTX-induced damage in the various organs especially in liver. The aim of this study was to determine the protective effect of Chrysin against MTX-induced hepatic oxidative stress and apoptosis in rats. In the present study, efficacy of Chrysin was investigated against hepatotoxicity caused by MTX in terms of biochemical investigations of antioxidant enzymes, apoptosis, and histopathological alteration in rat liver. In the MTX-treated group there was a significant increase in alanine transaminase, aspartate aminotransferase, lactate dehydrogenase activity and malondialdehyde content as well as decreased glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase activities and reduced glutathione content were also observed compared to the control group as a marker of oxidative stress. Histopathological alterations and apoptosis through the immunopositive staining of p53, cleaved caspases-3 and Bcl-2-associated X protein in rat liver were observed. Pretreatment of Chrysin at both doses prevents the hepatotoxicity by ameliorating oxidative stress, histopathological alterations, and apoptosis and thus our results suggest that Chrysin has a protective effect against hepatotoxicity induced by MTX and it may, therefore, improve the therapeutic index of MTX if co-administration is done.  相似文献   

10.
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by BCR/ABL and SRC family tyrosine kinases. They interact with each other and subsequently activate downstream growth-signaling pathways, including Raf/MEK/ERK, Akt/mTOR, and STAT5 pathways. Although imatinib is the standard treatment for Ph+ leukemia, response rate of Ph+ ALL to imatinib is low, relapse is frequent and quick. Studies have documented the potential anti-tumor activities of curcumin. However, whether curcumin can be used in the therapy for Ph+ ALL remains obscure. Here, we reported that curcumin induced apoptosis by inhibition of AKT/mTOR and ABL/STAT5 signaling, down-regulation of BCR/ABL expression, and induction of the BCL2/BAX imbalance. Curcumin exerted synergetic anti-leukemia effects with imatinib by inhibition of the imatinib-mediated overactivation of AKT/mTOR signaling and down-regulation of BCR/ABL gene expression. In primary samples from Ph+ ALL patients, curcumin inhibited cellular proliferation and down-regulated constitutive activation of growth-signaling pathways not only in newly diagnosed patients but also in imatinib-resistant patients. In Ph+ ALL mouse models, curcumin exhibited synergetic anti-leukemia effects with imatinib. These results demonstrated that curcumin might be a promising agent for Ph+ ALL patients.  相似文献   

11.
Sialic acids as terminal residues of oligosaccharide chains play crucial roles in several cellular recognition events. Exploiting the selective affinity of Achatinin-H toward N-acetyl-9-O-acetylneuraminic acid-alpha2-6-GalNAc, we have demonstrated the presence of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) on lymphoblasts of 70 children with acute lymphoblastic leukemia (ALL) and on leukemic cell lines by fluorimetric HPLC and flow cytometric analysis. This study aims to assess the structural aspect of the glycotope of Neu5,9Ac(2)-GPs(ALL) and to evaluate whether these disease-specific molecules can be used to monitor the clinical outcome of ALL. The Neu5,9Ac(2)-GPs(ALL) were affinity-purified, and three distinct leukemia-specific molecular determinants (135, 120, and 90 kDa) were demonstrated by SDS-PAGE, western blotting, and isoelectric focusing. The carbohydrate epitope of Neu5,9Ac(2)-GPs(ALL) was confirmed by using synthetic sialic acid analogs. The enhanced presence of anti-Neu5,9Ac(2)-GP(ALL) antibody in ALL patients prompted us to develop an antigen-ELISA using purified Neu5,9Ac(2)-GPs(ALL) as coating antigens. Purified antigen was able to detect leukemia-specific antibodies at presentation of disease, which gradually decreased with treatment. Longitudinal monitoring of 18 patients revealed that in the early phase of the treatment patients with lower anti-Neu5,9Ac(2)-GPs showed a better prognosis. Minimal cross-reactivity was observed in other hematological disorders (n = 50) like chronic myeloid leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, and non-Hodgkin's lymphoma as well as normal healthy individuals (n = 21). This study demonstrated the potential of purified Neu5,9Ac(2)-GPs(ALL) as an alternate tool for detection of anti-Neu5,9Ac(2)-GP antibodies to be helpful for diagnosis and monitoring of childhood ALL patients.  相似文献   

12.
Gamma-glutamyl hydrolase (GGH) catalyzes degradation of the active polyglutamates of natural folates and the antifolate methotrexate (MTX). We found that GGH activity is directly related to GGH messenger RNA expression in acute lymphoblastic leukemia (ALL) cells of patients with a wild-type germline GGH genotype. We identified two CpG islands (CpG1 and CpG2) in the region extending from the GGH promoter through the first exon and into intron 1 and showed that methylation of both CpG islands in the GGH promoter (seen in leukemia cells from approximately 15% of patients with nonhyperdiploid B-lineage ALL) is associated with significantly reduced GGH mRNA expression and catalytic activity and with significantly higher accumulation of MTX polyglutamates (MTXPG(4-7)) in ALL cells. Furthermore, methylation of CpG1 was leukemia-cell specific and had a pronounced effect on GGH expression, whereas methylation of CpG2 was common in leukemia cells and normal leukocytes but did not significantly alter GGH expression. These findings indicate that GGH activity in human leukemia cells is regulated by epigenetic changes, in addition to previously recognized genetic polymorphisms and karyotypic abnormalities, which collectively determine interindividual differences in GGH activity and influence MTXPG accumulation in leukemia cells.  相似文献   

13.
14.
Nephrotoxicity is an adverse side effect of methotrexate (MTX) chemotherapy. The present study verifies whether melatonin, an endogenous antioxidant prevents MTX‐induced renal damage. Adult rats were administered 7 mg/kg body weight MTX intraperitoneally for 3 days. In the melatonin pretreated rats, 40 mg/ kg body weight melatonin was administered daily intraperitoneally 1 h before the administration of MTX. The rats were killed 12 h after the final dose of MTX/vehicle. The kidneys were used for light microscopic and biochemical studies. The markers of oxidative stress were measured along with the activities of the antioxidant enzymes and myeloperoxidase activity in the kidney homogenates. Pretreatment with melatonin reduced MTX induced renal damage both histologically and biochemically as revealed by normal plasma creatinine levels. Melatonin pretreatment reduced MTX induced oxidative stress, alteration in the activity of antioxidant enzymes as well as elevation in myeloperoxidase activity. The results suggest that melatonin has the potential to reduce MTX induced oxidative stress, neutrophil infiltration as well as renal damage. As melatonin is an endogenous antioxidant and is non‐toxic even in high doses it is suggested that melatonin may be beneficial in minimizing MTX induced renal damage in humans. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Methotrexate (MTX) is the first-line treatment for rheumatoid arthritis (RA). However, after long-term treatment, some patients develop resistance. P-glycoprotein (P-gp), as an indispensable drug transporter, is essential for mediating this MTX resistance. In addition, nobiletin (NOB), a naturally occurring polymethoxylated flavonoid, has also been shown to reverse P-gp–mediated MTX resistance in RA groups; however, the precise role of NOB in this process is still unclear. Here, we administered MTX and NOB alone or in combination to collagen II-induced arthritic (CIA) mice and evaluated disease severity using the arthritis index, synovial histopathological changes, immunohistochemistry, and P-gp expression. In addition, we used conventional RNA-seq to identify targets and possible pathways through which NOB reverses MTX-induced drug resistance. We found that NOB in combination with MTX could enhance its performance in synovial tissue and decrease P-gp expression in CIA mice compared to MTX treatment alone. In vitro, in MTX-resistant fibroblast-like synoviocytes from CIA cells (CIA-FLS/MTX), we show that NOB treatment downregulated the PI3K/AKT/HIF-1α pathway, thereby reducing the synthesis of the P-gp protein. In addition, NOB significantly inhibited glycolysis and metabolic activity of CIA-FLS/MTX cells, which could reduce the production of ATP and block P-gp, ultimately decreasing the efflux of MTX and maintaining its anti-RA effects. In conclusion, this study shows that NOB overcomes MTX resistance in CIA-FLS/MTX cells through the PI3K/AKT/HIF-1α pathway, simultaneously influencing metabolic processes and inhibiting P-gp–induced drug efflux.  相似文献   

16.
micro RNAs(mi RNAs)是一种内源性的基因调控元件,参与细胞增殖、分化、凋亡等多种重要生物学过程。在许多实体瘤和血液系统恶性肿瘤中均存在mi RNA异常表达,说明mi RNA可能参与肿瘤的发生及发展。Wnt通路是一条经典的信号通路,其异常激活与多种实体瘤和血液系统恶性肿瘤的发生发展密切相关。急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)是一种常见的成人血液系统恶性肿瘤,现已发现多种mi RNA在ALL中异常表达,并与发病、治疗效果及预后有关。在ALL中可见Wnt信号通路的异常激活及通路抑制剂的异常失活,并且这些变化与ALL的预后密切相关。本文就mi RNAs和Wnt信号通路在急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)中的作用相关研究进展作一综述,以提供靶向治疗ALL的新思路。  相似文献   

17.
Methotrexate (MTX) is a chemotherapeutic agent widely used to treat a variety of tumors. Nonetheless, MTX-induced hippocampal neurotoxicity is a well-defined dose-limiting adverse effect that limits clinical utility. Proinflammatory cytokine production and oxidative stress are possible mechanisms for MTX-induced neurotoxicity. Buspirone (BSP), a partial agonist of the 5-HT1a receptor (5-HT1aR), has emerged as an anxiolytic drug. BSP has been shown to possess antioxidant and anti-inflammatory effects. The current study investigated BSP's potential anti-inflammatory and antioxidant effects in attenuating MTX-induced hippocampal toxicity. Rats received either BSP (1.5 mg/kg) orally for 10 days and MTX (20 mg/kg) i.p. on Day 5. BSP administration markedly protected hippocampal neurons from drastic degenerated neuronal changes induced by MTX. BSP significantly attenuated oxidative injury by downregulating Kelch-like ECH-associated protein 1 expression while potently elevating hippocampal Nrf2, heme oxygenase-1, and peroxisome proliferator-activated receptor expression. BSP dampened inflammation by reducing NO2, tumor necrosis factor-alpha, IL-6, and interleukin 1 beta levels mediated by downregulating NF-κB and neuronal nitric oxides synthase expression. Moreover, BSP potently counteracted hippocampal pyroptosis by downregulating NLRP3, ASC, and cleaved-caspase-1 proteins. Therefore, BSP may represent a promising approach to attenuate neurotoxicity in patients receiving MTX.  相似文献   

18.
Previously we demonstrated that c-Jun N-terminal kinase (JNK) plays a central role in acetaminophen (APAP)-induced liver injury. In the current work, we examined other possible signaling pathways that may also contribute to APAP hepatotoxicity. APAP treatment to mice caused glycogen synthase kinase-3β (GSK-3β) activation and translocation to mitochondria during the initial phase of APAP-induced liver injury (∼1 h). The silencing of GSK-3β, but not Akt-2 (protein kinase B) or glycogen synthase kinase-3α (GSK-3α), using antisense significantly protected mice from APAP-induced liver injury. The silencing of GSK-3β affected several key pathways important in conferring protection against APAP-induced liver injury. APAP treatment was observed to promote the loss of glutamate cysteine ligase (GCL, rate-limiting enzyme in GSH synthesis) in liver. The silencing of GSK-3β decreased the loss of hepatic GCL, and promoted greater GSH recovery in liver following APAP treatment. Silencing JNK1 and -2 also prevented the loss of GCL. APAP treatment also resulted in GSK-3β translocation to mitochondria and the degradation of myeloid cell leukemia sequence 1 (Mcl-1) in mitochondrial membranes in liver. The silencing of GSK-3β reduced Mcl-1 degradation caused by APAP treatment. The silencing of GSK-3β also resulted in an inhibition of the early phase (0–2 h), and blunted the late phase (after 4 h) of JNK activation and translocation to mitochondria in liver following APAP treatment. Taken together our results suggest that activation of GSK-3β is a key mediator of the initial phase of APAP-induced liver injury through modulating GCL and Mcl-1 degradation, as well as JNK activation in liver.  相似文献   

19.
Acute and long-term sequels of central nervous system (CNS) prophylaxis with irradiation and intrathecal chemotherapy in children suffering from acute lymphoblastic leukemia (ALL) include vasculopathies, leucoencephalopathies, intracranial calcifications, intellectual and neurological impairment. We report two children at the age 5 and 8 years who manifested partial motor or complex seizures and intracranial calcifications 2-4 years after the diagnosis of ALL had been established. The occurrence of these disorders was much earlier than reported in the literature. Both children received prophylactic CNS treatment with irradiation and intrathecal methotrexate (MTX). Their brain CT scans and EEG had been normal before the first epileptic seizure was registered. Children are now seizure free on carbamazepine, and a boy with complex partial and myoclonic seizures is also on valproate and vigabatrine. Symptomatic epilepsy associated with intracranial calcifications and persisting EEG changes might occur as side effects of ALL treatment.  相似文献   

20.
Methotrexate (MTX) has been implicated in the pathogenesis of hepatic fibrosis. However, no information exists regarding the effects of MTX on hepatic collagen metabolism. Therefore, we studied the role of MTX in hepatic collagen production in vivo in rats receiving an 8-week course of varying doses of MTX. Twenty-four hours prior to sacrifice animals received an injection of [5-3H]proline. Collagen was extracted with hot trichloroacetic acid and the proteinbound [3H]hydroxyproline was used as a measure of de novo collagen production. The hepatic collagen content was essentially the same in the control and treatment groups in spite of evidence of hepatotoxicity. Similarly, no significant differences were present among the control and MTX-treated groups in the de novo absolute collagen production. In summary, we found no evidence of increased hepatic fibrogenesis in small groups of animals after 8 weeks of treatment with MTX. Data clearly supporting the claim that MTX itself is responsible for hepatic fibrosis are lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号