首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
细胞核是细胞遗传与代谢的控制中心,调控细胞对外界的响应、代谢、生长和分化等细胞活动。在细菌感染宿主细胞过程中,个别细菌来源的效应蛋白能够靶向进入宿主细胞核,影响细胞核内基因的转录、RNA剪切、DNA修复以及染色质重组等生命活动,将这些能够进入细胞核的细菌效应蛋白称之为核调节蛋白。对病原菌分泌的核调节蛋白进入宿主细胞核的方式,以及不同病原菌的核调节蛋白调控宿主细胞的生命过程进行归纳总结,从而为深入探究病原细菌感染宿主细胞的致病机理提供理论基础。  相似文献   

2.
The modulation of the chromatin organization of eukaryotic cells plays an important role in regulating key cellular processes including host defence mechanisms against pathogens. Thus, to successfully survive in a host cell, a sophisticated bacterial strategy is the subversion of nuclear processes of the eukaryotic cell. Indeed, the number of bacterial proteins that target host chromatin to remodel the host epigenetic machinery is expanding. Some of the identified bacterial effectors that target the chromatin machinery are ‘eukaryotic‐like’ proteins as they mimic eukaryotic histone writers in carrying the same enzymatic activities. The best‐studied examples are the SET domain proteins that methylate histones to change the chromatin landscape. In this review, we will discuss SET domain proteins identified in the Legionella, Chlamydia and Bacillus genomes that encode enzymatic activities targeting host histones. Moreover, we discuss their possible origin as having evolved from prokaryotic ancestors or having been acquired from their eukaryotic hosts during their co‐evolution. The characterization of such bacterial effectors as modifiers of the host chromatin landscape is an exciting field of research as it elucidates new bacterial strategies to not only manipulate host functions through histone modifications but it may also identify new modifications of the mammalian host cells not known before.  相似文献   

3.
4.
5.
Bacterial pathogens are dependent on virulence factors to efficiently colonize and propagate within their hosts. Many Gram-negative bacterial pathogens rely on specialized proteinaceous secretion systems that inject virulence factors, termed effectors, directly into host cells. These bacterial effector proteins perform various functions within host cells; however, regulation of their function within the host cell is highly enigmatic. It is becoming increasingly apparent that many of these effectors directly influence and regulate each other and their mechanisms within the host cell. We discuss the emerging theme of bacterial effector interplay impacting infection and the importance of investigating this topic.  相似文献   

6.
Escape into the host cell cytosol following invasion of mammalian cells is a common strategy used by invasive pathogens. This requires membrane rupture of the vesicular or vacuolar compartment formed around the bacteria after uptake into the host cell. The mechanism of pathogen‐induced disassembly of the vacuolar membrane is poorly understood. We established a novel, robust and sensitive fluorescence microscopy method that tracks the precise time point of vacuole rupture upon uptake of Gram‐negative bacteria. This revealed that the enteroinvasive pathogen Shigella flexneri escapes rapidly, in less than 10 min, from the vacuole. Our method demonstrated the recruitment of host factors, such as RhoA, to the bacterial entry site and their continued presence at the point of vacuole rupture. We found a novel host marker for ruptured vacuoles, galectin‐3, which appears instantly in the proximity of bacteria after escape into the cytosol. Furthermore, we show that the Salmonella effector proteins, SifA and PipB2, stabilize the vacuole membrane inhibiting bacterial escape from the vacuole. Our novel approach to track vacuole rupture is ideally suited for high‐content and high‐throughput approaches to identify the molecular and cellular mechanisms of membrane rupture during invasion by pathogens such as viruses, bacteria and parasites.  相似文献   

7.
The invasive pathogen Salmonella enterica has evolved sophisticated mechanisms to subvert the cytoskeletal machinery of its host. Following contact with the host cell, it delivers a distinct arsenal of effector proteins directly into the cytoplasm. These bacterial effectors coordinate transient actin rearrangements and alter vesicle trafficking to trigger invasion, without causing overt cellular damage. Recent studies have shed new light on the signaling mechanisms underlying this remarkable host-pathogen interface, in particular, highlighting the unique multi-functional role and temporal regulation of key bacterial effectors.  相似文献   

8.
Pathogen trafficking pathways and host phosphoinositide metabolism   总被引:1,自引:0,他引:1  
Phosphoinositide (PI) glycerolipids are key regulators of eukaryotic signal transduction, cytoskeleton architecture and membrane dynamics. The host cell PI metabolism is targeted by intracellular bacterial pathogens, which evolved intricate strategies to modulate uptake processes and vesicle trafficking pathways. Upon entering eukaryotic host cells, pathogenic bacteria replicate in distinct vacuoles or in the host cytoplasm. Vacuolar pathogens manipulate PI levels to mimic or modify membranes of subcellular compartments and thereby establish their replicative niche. Legionella pneumophila , Brucella abortus , Mycobacterium tuberculosis and Salmonella enterica translocate effector proteins into the host cell, some of which anchor to the vacuolar membrane via PIs or enzymatically turnover PIs. Cytoplasmic pathogens target PI metabolism at the plasma membrane, thus modulating their uptake and antiapoptotic signalling pathways. Employing this strategy, Shigella flexneri directly injects a PI-modifying effector protein, while Listeria monocytogenes exploits PI metabolism indirectly by binding to transmembrane receptors. Thus, regardless of the intracellular lifestyle of the pathogen, PI metabolism is critically involved in the interactions with host cells.  相似文献   

9.
10.
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.  相似文献   

11.
Plants perceive an assortment of external cues during their life cycle, including abiotic and biotic stressors. Biotic stress from a variety of pathogens, including viruses, oomycetes, fungi, and bacteria, is considered to be a substantial factor hindering plant growth and development. To hijack the host cell's defence machinery, plant pathogens have evolved sophisticated attack strategies mediated by numerous effector proteins. Several studies have indicated that plasmodesmata (PD), symplasmic pores that facilitate cell-to-cell communication between a cell and neighbouring cells, are one of the targets of pathogen effectors. However, in contrast to plant-pathogenic viruses, reports of fungal- and bacterial-encoded effectors that localize to and exploit PD are limited. Surprisingly, a recent study of PD-associated bacterial effectors has shown that a number of bacterial effectors undergo cell-to-cell movement via PD. Here we summarize and highlight recent advances in the study of PD-associated fungal/oomycete/bacterial effectors. We also discuss how pathogen effectors interfere with host defence mechanisms in the context of PD regulation.  相似文献   

12.
Intracellular pathogens can manipulate host cellular pathways to create specialized organelles. These pathogen-modified vacuoles permit the survival and replication of bacterial and protozoan microorganisms inside of the host cell. By establishing an atypical organelle, intracellular pathogens present unique challenges to the host immune system. To understand pathogenesis, it is important to not only investigate how these organisms create unique subcellular compartments, but to also determine how mammalian immune systems have evolved to detect and respond to pathogens sequestered in specialized vacuoles. Recent studies have identified genes in the respiratory pathogen Legionella pneumophila that are essential for establishing a unique endoplasmic reticulum-derived organelle inside of mammalian macrophages, making this pathogen an attractive model system for investigations on host immune responses that are specific for bacteria that establish vacuoles disconnected from the endocytic pathway. This review will focus on the host immune response to Legionella and highlight areas of Legionella research that should help elucidate host strategies to combat infections by intracellular pathogens.  相似文献   

13.
Given the critical roles of inflammation and programmed cell death in fighting infection, it is not surprising that many bacterial pathogens have evolved strategies to inactivate these defences. The causative agent of infant diarrhoea, enteropathogenic Escherichia coli (EPEC), is an extracellular, intestinal pathogen that blocks both inflammation and programmed cell death. EPEC attaches to enterocytes, remains in the gut lumen and utilizes a type III secretion system (T3SS) to inject multiple virulence effector proteins directly into the infected cell, many of which subvert host antimicrobial processes through the disruption of signalling pathways. Recently, T3SS effector proteins from EPEC have been identified that inhibit death receptor‐induced apoptosis. Here we review the mechanisms used by EPEC T3SS effectors to manipulate apoptosis and promote host cell survival and discuss the role of these activities during infection.  相似文献   

14.
15.
Hijacking of eukaryotic functions by intracellular bacterial pathogens.   总被引:4,自引:0,他引:4  
Intracellular bacterial pathogens have evolved as a group of microorganisms endowed with weapons to hijack many biological processes of eukaryotic cells. This review discusses how these pathogens perturb diverse host cell functions, such as cytoskeleton dynamics and organelle vesicular trafficking. Alteration of the cytoskeleton is discussed in the context of the bacterial entry process (invasion), which occurs either by activation of membrane-located host receptors ("zipper" mechanism) or by injection of bacterial proteins into the host cell cytosol ("trigger" mechanism). In addition, the two major types of intracellular lifestyles, cytosolic versus intravacuolar (phagosomal), which are the consequence of alterations in the phagosome-lysosome maturation route, are compared. Specific examples illustrating known mechanisms of mimicry or hijacking of the host target are provided. Finally, recent advances in phagosome proteomics and genome expression in intracellular bacteria are described. These new technologies are yielding valuable clues as to how these specialized bacterial pathogens manipulate the mammalian host cell.  相似文献   

16.
Microbial pathogens and pests of animals and plants secrete effector proteins into host cells, altering cellular physiology to the benefit of the invading parasite. Research in the past decade has delivered significant new insights into the molecular mechanisms of how these effector proteins function, with a particular focus on modulation of host immunity‐related pathways. One host system that has emerged as a common target of effectors is the ubiquitination system in which substrate proteins are post‐translationally modified by covalent conjugation with the small protein ubiquitin. This modification, typically via isopeptide bond formation through a lysine side chain of ubiquitin, can result in target degradation, relocalization, altered activity or affect protein–protein interactions. In this review, I focus primarily on how effector proteins from bacterial and filamentous pathogens of plants and pests perturb host ubiquitination pathways that ultimately include the 26S proteasome. The activities of these effectors, in how they affect ubiquitin pathways in plants, reveal how pathogens have evolved to identify and exploit weaknesses in this system that deliver increased pathogen fitness.  相似文献   

17.
Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens. Furthermore, our study highlights the remarkable evolvability of T4SSs and their effector proteins, explaining their broad application in bacterial interactions with the environment.  相似文献   

18.
19.
Several intracellular bacterial pathogens, including species of Listeria, Rickettsia, Shigella, Mycobacteria, and Burkholderia, have evolved mechanisms to exploit the actin polymerization machinery of their hosts to induce actin-based motility, enabling these pathogens to spread between host cells without exposing themselves to the extracellular milieu. Efficient cell-to-cell spread requires directional motility, which the bacteria may achieve by concentrating the effector molecules at one pole of their cell body, thereby restricting polymerization of monomeric actin into actin tails to this pole. The study of the molecular processes involved in the initiation of actin tail formation at the bacterial surface, and subsequent actin-based motility, has provided much insight into the pathogenesis of infections caused by these bacteria and into the cell biology of actin dynamics. Concomitantly, this field of research has provided an opportunity to understand the mechanisms whereby bacteria can achieve a polarized distribution of surface proteins. This review will describe the process of actin-based motility of intracellular bacteria, and the mechanisms by which bacteria can obtain a polarized distribution of their surface proteins.  相似文献   

20.
Plant immune systems effectively prevent infections caused by the majority of microbial pathogens that are encountered by plants. However, successful pathogens have evolved specialized strategies to suppress plant defense responses and induce disease susceptibility in otherwise resistant hosts. Recent advances reveal that phytopathogenic bacteria use type III effector proteins, toxins, and other factors to inhibit host defenses. Host processes that are targeted by bacteria include programmed cell death, cell wall-based defense, hormone signaling, the expression of defense genes, and other basal defenses. The discovery of plant defenses that are vulnerable to pathogen attack has provided new insights into mechanisms that are essential for both bacterial pathogenesis and plant disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号