首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium (Ca2+) and magnesium (Mg2+) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca2+ and Mg2+ homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca2+ and Mg2+; however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases.  相似文献   

2.
Calcium (Ca2+) and magnesium (Mg2+) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca2+ and Mg2+ homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca2+ and Mg2+; however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases.  相似文献   

3.
Transient receptor potential cation channel subfamily M member 7 (TRPM7) composed of an ion channel and a kinase domain regulates triple-negative breast cancer (TNBC) cell migration, invasion, and metastasis, but it does not modulate TNBC proliferation. However, previous studies have shown that the combination treatment of nonselective TRPM7 channel inhibitors (2-aminoethoxydiphenyl borate and Gd3+) with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) increases antiproliferative effects and apoptosis in prostate cancer cells and hepatic stellate cells. We, therefore, investigated the potential role of TRPM7 in proliferation and apoptosis of TNBC cells (MDA-MB-231 and MDA-MB-468 cells) with TRAIL. We demonstrated that suppression of TRPM7 via TRPM7 knockdown or pharmacological inhibition synergistically increases TRAIL-induced antiproliferative effects and apoptosis in TNBC cells. Furthermore, we showed that the synergistic interaction might be associated with TRPM7 channel activities using combination treatments of TRAIL and TRPM7 inhibitors (NS8593 as a TRPM7 channel inhibitor and TG100-115 as a TRPM7 kinase inhibitor). We reveal that downregulation of cellular FLICE-inhibitory protein via inhibition of Ca2+ influx might be involved in the synergistic interaction. Our study would provide both a new role of TRPM7 in TNBC cell apoptosis and a potential combinatorial therapeutic strategy using TRPM7 inhibitors with TRAIL in the treatment of TNBC.  相似文献   

4.
TRPM3 has been reported to play an important role in Ca2+ homeostasis, but its gating mechanisms and regulation via Ca2+ are unknown. Ca2+ binding proteins such as calmodulin (CaM) could be probable modulators of this ion channel. We have shown that this protein binds to two independent domains, A35-K124 and H291-G382 on the TRPM3 N-terminus, which contain conserved hydrophobic as well as positively charged residues in specific positions, and that these residues have a crucial impact on its binding. We also showed that another Ca2+ binding protein, S100A1, is able to bind to these regions and that CaM and S100A1 compete for these binding sites on the TRPM3 N-terminus. Moreover, our results suggest that another very important TRP channel activity modulator, PtdIns(4,5)P2, interacts with the CaM/S100A1 binding sites on the TRPM3 N-terminus with high affinity.  相似文献   

5.
TRPM7 is a novel magnesium-nucleotide-regulated metal current (MagNuM) channel that is regulated by serum Mg2+ concentrations. Changes in Mg2+ concentration have been shown to alter cell proliferation in various cells; however, the mechanism and the ion channel(s) involved have not yet been identified. Here we demonstrate that TRPM7 is expressed in control and prostate cancer cells. Supplementation of intracellular Mg-ATP or addition of external 2-aminoethoxydiphenyl borate inhibited MagNuM currents. Furthermore, silencing of TRPM7 inhibited whereas overexpression of TRPM7 increased endogenous MagNuM currents, suggesting that these currents are dependent on TRPM7. Importantly, although an increase in the serum Ca2+/Mg2+ ratio facilitated Ca2+ influx in both control and prostate cancer cells, a significantly higher Ca2+ influx was observed in prostate cancer cells. TRPM7 expression was also increased in cancer cells, but its expression was not dependent on the Ca2+/Mg2+ ratio per se. Additionally, an increase in the extracellular Ca2+/Mg2+ ratio led to a significant increase in cell proliferation of prostate cancer cells when compared with control cells. Consistent with these results, age-matched prostate cancer patients also showed a subsequent increase in the Ca2+/Mg2+ ratio and TRPM7 expression. Altogether, we provide evidence that the TRPM7 channel has an important role in prostate cancer and have identified that the Ca2+/Mg2+ ratio could be essential for the initiation/progression of prostate cancer.  相似文献   

6.
TRPM3 proteins assemble to Ca2+-permeable cation channels in the plasma membrane, which act as nociceptors of noxious heat and mediators of insulin and cytokine release. Here we show that TRPM3 channel activity is strongly dependent on intracellular Ca2+. Conceivably, this effect is attributed to the Ca2+ binding protein calmodulin, which binds to TRPM3 in a Ca2+-dependent manner. We identified five calmodulin binding sites within the amino terminus of TRPM3, which displayed different binding affinities in dependence of Ca2+. Mutations of lysine residues in calmodulin binding site 2 strongly reduced calmodulin binding and TRPM3 activity indicating the importance of this domain for TRPM3-mediated Ca2+ signaling. Our data show that TRPM3 channels are regulated by intracellular Ca2+ and provide the basis for a mechanistic understanding of the regulation of TRPM3 by calmodulin.  相似文献   

7.
Cell migration depends on the dynamic formation and turnover of cell adhesions and is tightly controlled by actomyosin contractility and local Ca2+ signals. The divalent cation channel TRPM7 (Transient Receptor Potential cation channel, subfamily Melastatin, member 7) has recently received much attention as a regulator of cell adhesion, migration and (localized) Ca2+ signaling. Overexpression and knockdown of TRPM7 affects actomyosin contractility and the formation of cell adhesions such as invadosomes and focal adhesions, but the role of TRPM7-mediated Ca2+ signals herein is currently not understood. Using Total Internal Reflection Fluorescence (TIRF) Ca2+ fluorometry and a novel automated analysis routine we have addressed the role of Ca2+ in the control of invadosome dynamics in N1E-115 mouse neuroblastoma cells. We find that TRPM7 promotes the formation of highly repetitive and localized Ca2+ microdomains or “Ca2+ sparking hotspots” at the ventral plasma membrane. Ca2+ sparking appears strictly dependent on extracellular Ca2+ and is abolished by TRPM7 channel inhibitors such as waixenicin-A. TRPM7 inhibition also induces invadosome dissolution. However, invadosome formation is (functionally and spatially) dissociated from TRPM7-mediated Ca2+ sparks. Rather, our data indicate that TRPM7 affects actomyosin contractility and invadosome formation independent of Ca2+ influx.  相似文献   

8.
We recently reported key physiologic roles for Ca2+-activated transient receptor potential melastatin 4 (TRPM4) channels in detrusor smooth muscle (DSM). However, the Ca2+-signaling mechanisms governing TRPM4 channel activity in human DSM cells are unexplored. As the TRPM4 channels are activated by Ca2+, inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the sarcoplasmic reticulum represents a potential Ca2+ source for TRPM4 channel activation. We used clinically-characterized human DSM tissues to investigate the molecular and functional interactions of the IP3Rs and TRPM4 channels. With in situ proximity ligation assay (PLA) and perforated patch-clamp electrophysiology, we tested the hypothesis that TRPM4 channels are tightly associated with the IP3Rs and are activated by IP3R-mediated Ca2+ release in human DSM. With in situ PLA, we demonstrated co-localization of the TRPM4 channels and IP3Rs in human DSM cells. As the TRPM4 channels and IP3Rs must be located within close apposition to functionally interact, these findings support the concept of a potential Ca2+-mediated TRPM4-IP3R regulatory mechanism. To investigate IP3R regulation of TRPM4 channel activity, we sought to determine the consequences of IP3R pharmacological inhibition on TRPM4 channel-mediated transient inward cation currents (TICCs). In freshly-isolated human DSM cells, blocking the IP3Rs with the selective IP3R inhibitor xestospongin-C significantly decreased TICCs. The data suggest that IP3Rs have a key role in mediating the Ca2+-dependent activation of TRPM4 channels in human DSM. The study provides novel insight into the molecular and cellular mechanisms regulating TRPM4 channels by revealing that TRPM4 channels and IP3Rs are spatially and functionally coupled in human DSM.  相似文献   

9.
10.
During gastrulation, cells in the dorsal marginal zone polarize, elongate, align and intercalate to establish the physical body axis of the developing embryo. Here we demonstrate that the bifunctional channel-kinase TRPM7 is specifically required for vertebrate gastrulation. TRPM7 is temporally expressed maternally and throughout development, and is spatially enriched in tissues undergoing convergent extension during gastrulation. Functional studies reveal that TRPM7's ion channel, but not its kinase domain, specifically affects cell polarity and convergent extension movements during gastrulation, independent of mesodermal specification. During gastrulation, the non-canonical Wnt pathway via Dishevelled (Dvl) orchestrates the activities of the GTPases Rho and Rac to control convergent extension movements. We find that TRPM7 functions synergistically with non-canonical Wnt signaling to regulate Rac activity. The phenotype caused by depletion of the Ca2+- and Mg2+-permeant TRPM7 is suppressed by expression of a dominant negative form of Rac, as well as by Mg2+ supplementation or by expression of the Mg2+ transporter SLC41A2. Together, these studies demonstrate an essential role for the ion channel TRPM7 and Mg2+ in Rac-dependent polarized cell movements during vertebrate gastrulation.  相似文献   

11.
Reactive oxygen species (ROS) play critical roles in cell death, diseases, and normal cellular processes. TRPM2 is a member of transient receptor potential (TRP) protein superfamily and forms a Ca2+-permeable nonselective cation channel activated by ROS, specifically by hydrogen peroxide (H2O2), and at least in part via second-messenger mechanisms. Accumulating evidence has indicated that TRPM2 mediates multiple cellular responses, after our finding that Ca2+ influx via TRPM2 regulates H2O2-induced cell death. Recently, we have demonstrated that Ca2+ influx through TRPM2 induces chemokine production in monocytes and macrophages, which aggravates inflammatory neutrophil infiltration in mice. However, understanding is still limited for in vivo physiological or pathophysiological significance of ROS-induced TRPM2 activation. In this review, we summarize mechanisms underlying activation of TRPM2 channels by oxidative stress and downstream biological responses, and discuss the biological importance of oxidative stress-activated TRP channels.  相似文献   

12.
The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial­to­mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.  相似文献   

13.
Transient receptor potential cation channel subfamily M member 4 (TRPM4) is a Ca2+-activated nonselective cation channel that mediates membrane depolarization. Although, a current with the hallmarks of a TRPM4-mediated current has been previously reported in pancreatic acinar cells (PACs), the role of TRPM4 in the regulation of acinar cell function has not yet been explored. In the present study, we identify this TRPM4 current and describe its role in context of Ca2+ signaling of PACs using pharmacological tools and TRPM4-deficient mice. We found a significant Ca2+-activated cation current in PACs that was sensitive to the TRPM4 inhibitors 9-phenanthrol and 4-chloro-2-[[2-(2-chlorophenoxy)acetyl]amino]benzoic acid (CBA). We demonstrated that the CBA-sensitive current was responsible for a Ca2+-dependent depolarization of PACs from a resting membrane potential of −44.4 ± 2.9 to −27.7 ± 3 mV. Furthermore, we showed that Ca2+ influx was higher in the TRPM4 KO- and CBA-treated PACs than in control cells. As hormone-induced repetitive Ca2+ transients partially rely on Ca2+ influx in PACs, the role of TRPM4 was also assessed on Ca2+ oscillations elicited by physiologically relevant concentrations of the cholecystokinin analog cerulein. These data show that the amplitude of Ca2+ signals was significantly higher in TRPM4 KO than in control PACs. Our results suggest that PACs are depolarized by TRPM4 currents to an extent that results in a significant reduction of the inward driving force for Ca2+. In conclusion, TRPM4 links intracellular Ca2+ signaling to membrane potential as a negative feedback regulator of Ca2+ entry in PACs.  相似文献   

14.
《Cell calcium》2014,55(5):252-260
Cardiac fibrosis is involved in a lot of cardiovascular pathological processes. Cardiac fibrosis can block conduction, cause hypoxia, strengthen myocardial stiffness, create electrical heterogeneity, and hamper systolic ejection, which is associated with the development of arrhythmia, heart failure and sudden cardiac death. Besides the initial stimulating factors, the cardiac fibroblasts (CFs) are the principal responsible cells in the fibrogenesis cascade of events. TRPM7, a member of the TRPM (Melastatin) subfamily, is a non-selective cation channel, which permeates both Ca2+ and Mg2+. Here we demonstrated TRPM7 expression in CFs, and 2-APB (TRPM7 inhibitor), inhibited Ang II-induced CTGF, α-SMA expression and CFs proliferation. Besides, knocking down TRPM7 by shRNA, we proved that TRPM7 mediated both calcium and magnesium changes in cardiac fibroblasts which contribute to fibrosis progress. This study suggested that TRPM7 should play a pivotal role in cardiac fibroblast functions associated to cardiac fibrosis development.  相似文献   

15.
TRPM3 has been reported to play an important role in Ca2+ homeostasis, but its gating mechanisms and regulation via Ca2+ are unknown. Ca2+ binding proteins such as calmodulin (CaM) could be probable modulators of this ion channel. We have shown that this protein binds to two independent domains, A35-K124 and H291-G382 on the TRPM3 N-terminus, which contain conserved hydrophobic as well as positively charged residues in specific positions, and that these residues have a crucial impact on its binding. We also showed that another Ca2+ binding protein, S100A1, is able to bind to these regions and that CaM and S100A1 compete for these binding sites on the TRPM3 N-terminus. Moreover, our results suggest that another very important TRP channel activity modulator, PtdIns(4,5)P2, interacts with the CaM/S100A1 binding sites on the TRPM3 N-terminus with high affinity.  相似文献   

16.
Zinc deficiency has been linked to human diseases, including cancer. MDMX, a crucial zinc-containing negative regulator of p53, has been found to be amplified or overexpressed in various cancers and implicated in the cancer initiation and progression. We report here that zinc depletion by the ion chelator TPEN or Chelex resin results in MDMX protein degradation in a ubiquitination-independent and 20S proteasome-dependent manner. Restoration of zinc led to recovery of cellular levels of MDMX. Further, TPEN treatment inhibits growth of the MCF-7 breast cancer cell line, which is partially rescued by overexpression of MDMX. Moreover, in a mass-spectrometry-based proteomics analysis, we identified TRPM7, a zinc-permeable ion channel, as a novel MDMX-interacting protein. TRPM7 stabilizes and induces the appearance of faster migrating species of MDMX on SDS-PAGE. Depletion of TRPM7 attenuates, while TRPM7 overexpression facilitates, the recovery of MDMX levels upon adding back zinc to TPEN-treated cells. Importantly, we found that TRPM7 inhibition, like TPEN treatment, decreases breast cancer cell MCF-7 proliferation and migration. The inhibitory effect on cell migration upon TRPM7 inhibition is also partially rescued by overexpression of MDMX. Together, our data indicate that TRPM7 regulates cellular levels of MDMX in part by modulating the intracellular Zn2+ concentration to promote tumorigenesis.  相似文献   

17.
The Role of TRP Channels in Oxidative Stress-induced Cell Death   总被引:9,自引:0,他引:9  
The transient receptor potential (TRP) protein superfamily is a diverse group of voltage-independent calcium-permeable cation channels expressed in mammalian cells. These channels have been divided into six subfamilies, and two of them, TRPC and TRPM, have members that are widely expressed and activated by oxidative stress. TRPC3 and TRPC4 are activated by oxidants, which induce Na+ and Ca2+ entry into cells through mechanisms that are dependent on phospholipase C. TRPM2 is activated by oxidative stress or TNFα, and the mechanism involves production of ADP-ribose, which binds to an ADP-ribose binding cleft in the TRPM2 C-terminus. Treatment of HEK 293T cells expressing TRPM2 with H2O2 resulted in Ca2+ influx and increased susceptibility to cell death, whereas coexpression of the dominant negative isoform TRPM2-S suppressed H2O2-induced Ca2+ influx, the increase in [Ca2+]i, and onset of apoptosis. U937-ecoR monocytic cells expressing increased levels of TRPM2 also exhibited significantly increased [Ca2+]i and increased apoptosis after treatment with H2O2 or TNFα. A dramatic increase in caspase 8, 9, 3, 7, and PARP cleavage was observed in TRPM2-expressing cells, demonstrating a downstream mechanism through which cell death is mediated. Inhibition of endogenous TRPM2 function through three approaches, depletion of TRPM2 by RNA interference, blockade of the increase in [Ca2+]i through TRPM2 by calcium chelation, or expression of the dominant negative splice variant TRPM2-S protected cell viability. H2O2 and amyloid β-peptide also induced cell death in primary cultures of rat striatal cells, which endogenously express TRPM2. TRPM7 is activated by reactive oxygen species/nitrogen species, resulting in cation conductance and anoxic neuronal cell death, which is rescued by suppression of TRPM7 expression. TRPM2 and TRPM7 channels are physiologically important in oxidative stress-induced cell death.  相似文献   

18.
It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a “Ca2+ clock” controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 μM) and flufenamic acid (10 and 100 μM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca2+-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 μM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130–150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.  相似文献   

19.
Transient receptor potential melastatin 7 (TRPM7) is a Ca2+- and Mg2+-permeable nonselective cation channel that contains a unique carboxyl-terminal serine/threonine protein kinase domain. It has been reported that reactive oxygen species associated with hypoxia or ischemia activate TRPM7 current and then induce Ca2+ overload resulting in neuronal cell death in the brain. In this study, we aimed to investigate the molecular mechanisms of TRPM7 regulation by hydrogen peroxide (H2O2) using murine TRPM7 expressed in HEK293 cells. Using the whole-cell patch-clamp technique, it was revealed that the TRPM7 current was inhibited, not activated, by the application of H2O2 to the extracellular solution. This inhibition was not reversed after washout or treatment with dithiothreitol, suggesting irreversible oxidation of TRPM7 or its regulatory factors by H2O2 under whole-cell recording. Application of an electrophile, N-methylmaleimide (NMM), which covalently modifies cysteine residues in proteins, also inhibited TRPM7 current irreversibly. The effects of H2O2 and NMM were dependent on free [Mg2+]i; the inhibition was stronger when cells were perfused with higher free [Mg2+]i solutions via pipette. In addition, TRPM7 current was not inhibited by H2O2 when millimolar ATP was included in the intracellular solution, even in the presence of substantial free [Mg2+]i, which is sufficient for TRPM7 inhibition by H2O2 in the absence of ATP. Moreover, a kinase-deficient mutant of TRPM7 (K1645R) was similarly inhibited by H2O2 just like the wild-type TRPM7 in a [Mg2+]i- and [ATP]i-dependent manner, indicating no involvement of the kinase activity of TRPM7. Thus, these data suggest that oxidative stress inhibits TRPM7 current under pathological conditions that accompany intracellular ATP depletion and free [Mg2+]i elevation.  相似文献   

20.
Gao H  Chen X  Du X  Guan B  Liu Y  Zhang H 《Cell calcium》2011,50(6):559-568
Ion channels involved in the migration of tumor cells that is required for their invasion and metastasis. In this paper, we describe the interaction of TRPM7 channel and epidermal growth factor (EGF), an important player in cancer development in the migration of lung cancer cells. The TRPM7 currents in A549 cells were first characterized by means of electrophysiology, pharmacology and RNA interference. Removing Ca2+ from the extracellular solution not only potentiated a large inward current, but also abolished the outward rectification. 200 μM 2-APB inhibited the outward and the inward TRPM7 currents and at the same time restored the property of outward rectification. EGF greatly enhanced the migration of A549 cells, and also markedly up-regulated the membrane protein expression of TRPM7 and the amplitude of TRPM7 currents. Depressing the function of TRPM7 with RNA interference or pharmacological agents not only reversed the EGF-enhanced migration of A549 cells but also inhibited the basal migration of A549 cells in the absence of EGF. Thus it seems that TRPM7 plays a pivotal role in the migration of A549 cells induced by EGF and thus could be a potential therapeutic target in lung cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号