首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various biological database systems including datacapture, data storage, data retrieval and other data pro-cessing methods have been developed. These systems havebecome effective tools for today’s genomics and relatedstudies. However, the highly distribu…  相似文献   

2.
3.
Web-based exchange of biochemical information   总被引:1,自引:0,他引:1  
In this paper we present a web-based system for the semantic integration of biological data using a database model and an XML exchange format. The prototype developed integrates data related to enzymes.  相似文献   

4.
Research on biological data integration has traditionally focused on the development of systems for the maintenance and interconnection of databases. In the next few years, public and private biotechnology organisations will expand their actions to promote the creation of a post-genome semantic web. It has commonly been accepted that artificial intelligence and data mining techniques may support the interpretation of huge amounts of integrated data. But at the same time, these research disciplines are contributing to the creation of content markup languages and sophisticated programs able to exploit the constraints and preferences of user domains. This paper discusses a number of issues on intelligent systems for the integration of bioinformatic resources.  相似文献   

5.
A system for "intelligent" semantic integration and querying of federated databases is being implemented by using three main components: A component which enables SQL access to integrated databases by database federation (MARGBench), an ontology based semantic metadatabase (SEMEDA) and an ontology based query interface (SEMEDA-query). In this publication we explain and demonstrate the principles, architecture and the use of SEMEDA. Since SEMEDA is implemented as 3 tiered web application database providers can enter all relevant semantic and technical information about their databases by themselves via a web browser. SEMEDA' s collaborative ontology editing feature is not restricted to database integration, and might also be useful for ongoing ontology developments, such as the "Gene Ontology" [2]. SEMEDA can be found at http://www-bm.cs.uni-magdeburg.de/semeda/. We explain how this ontologically structured information can be used for semantic database integration. In addition, requirements to ontologies for molecular biological database integration are discussed and relevant existing ontologies are evaluated. We further discuss how ontologies and structured knowledge sources can be used in SEMEDA and whether they can be merged supplemented or updated to meet the requirements for semantic database integration.  相似文献   

6.
The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.  相似文献   

7.
8.
Data integration is key to functional and comparative genomics because integration allows diverse data types to be evaluated in new contexts. To achieve data integration in a scalable and sensible way, semantic standards are needed, both for naming things (standardized nomenclatures, use of key words) and also for knowledge representation. The Mouse Genome Informatics database and other model organism databases help to close the gap between information and understanding of biological processes because these resources enforce well-defined nomenclature and knowledge representation standards. Model organism databases have a critical role to play in ensuring that diverse kinds of data, especially genome-scale data sets and information, remain useful to the biological community in the long-term. The efforts of model organism database groups ensure not only that organism-specific data are integrated, curated and accessible but also that the information is structured in such a way that comparison of biological knowledge across model organisms is facilitated.  相似文献   

9.
According to the complementary learning systems (CLS) account of word learning, novel words are rapidly acquired (learning system 1), but slowly integrated into the mental lexicon (learning system 2). This two-step learning process has been shown to apply to novel word forms. In this study, we investigated whether novel word meanings are also gradually integrated after acquisition by measuring the extent to which newly learned words were able to prime semantically related words at two different time points. In addition, we investigated whether modality at study modulates this integration process. Sixty-four adult participants studied novel words together with written or spoken definitions. These words did not prime semantically related words directly following study, but did so after a 24-hour delay. This significant increase in the magnitude of the priming effect suggests that semantic integration occurs over time. Overall, words that were studied with a written definition showed larger priming effects, suggesting greater integration for the written study modality. Although the process of integration, reflected as an increase in the priming effect over time, did not significantly differ between study modalities, words studied with a written definition showed the most prominent positive effect after a 24-hour delay. Our data suggest that semantic integration requires time, and that studying in written format benefits semantic integration more than studying in spoken format. These findings are discussed in light of the CLS theory of word learning.  相似文献   

10.

Background  

Biomedical ontologies are critical for integration of data from diverse sources and for use by knowledge-based biomedical applications, especially natural language processing as well as associated mining and reasoning systems. The effectiveness of these systems is heavily dependent on the quality of the ontological terms and their classifications. To assist in developing and maintaining the ontologies objectively, we propose automatic approaches to classify and/or validate their semantic categories. In previous work, we developed an approach using contextual syntactic features obtained from a large domain corpus to reclassify and validate concepts of the Unified Medical Language System (UMLS), a comprehensive resource of biomedical terminology. In this paper, we introduce another classification approach based on words of the concept strings and compare it to the contextual syntactic approach.  相似文献   

11.
Programmatic access to data and tools through the web using so-called web services has an important role to play in bioinformatics. In this article, we discuss the most popular approaches based on SOAP/WS-I and REST and describe our, a cross section of the community, experiences with providing and using web services in the context of biological sequence analysis. We briefly review main technological approaches as well as best practice hints that are useful for both users and developers. Finally, syntactic and semantic data integration issues with multiple web services are discussed.  相似文献   

12.
With the increasing amount of data made available in the chemical field, there is a strong need for systems capable of comparing and classifying chemical compounds in an efficient and effective way. The best approaches existing today are based on the structure-activity relationship premise, which states that biological activity of a molecule is strongly related to its structural or physicochemical properties. This work presents a novel approach to the automatic classification of chemical compounds by integrating semantic similarity with existing structural comparison methods. Our approach was assessed based on the Matthews Correlation Coefficient for the prediction, and achieved values of 0.810 when used as a prediction of blood-brain barrier permeability, 0.694 for P-glycoprotein substrate, and 0.673 for estrogen receptor binding activity. These results expose a significant improvement over the currently existing methods, whose best performances were 0.628, 0.591, and 0.647 respectively. It was demonstrated that the integration of semantic similarity is a feasible and effective way to improve existing chemical compound classification systems. Among other possible uses, this tool helps the study of the evolution of metabolic pathways, the study of the correlation of metabolic networks with properties of those networks, or the improvement of ontologies that represent chemical information.  相似文献   

13.
As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.  相似文献   

14.
Joslyn C 《Bio Systems》2001,60(1-3):131-148
We provide a conceptual analysis of ideas and principles from the systems theory discourse which underlie Pattee's semantic or semiotic closure, which is itself foundational for a school of theoretical biology derived from systems theory and cybernetics, and is now being related to biological semiotics and explicated in the relational biological school of Rashevsky and Rosen. Atomic control systems and models are described as the canonical forms of semiotic organization, sharing measurement relations, but differing topologically in that control systems are circularly and models linearly related to their environments. Computation in control systems is introduced, motivating hierarchical decomposition, hybrid modeling and control systems, and anticipatory or model-based control. The semiotic relations in complex control systems are described in terms of relational constraints, and rules and laws are distinguished as contingent and necessary functional entailments, respectively. Finally, selection as a meta-level of constraint is introduced as the necessary condition for semantic relations in control systems and models.  相似文献   

15.
BACKGROUND: The semantic integration of biomedical resources is still a challenging issue which is required for effective information processing and data analysis. The availability of comprehensive knowledge resources such as biomedical ontologies and integrated thesauri greatly facilitates this integration effort by means of semantic annotation, which allows disparate data formats and contents to be expressed under a common semantic space. In this paper, we propose a multidimensional representation for such a semantic space, where dimensions regard the different perspectives in biomedical research (e.g., population, disease, anatomy and protein/genes). RESULTS: This paper presents a novel method for building multidimensional semantic spaces from semantically annotated biomedical data collections. This method consists of two main processes: knowledge and data normalization. The former one arranges the concepts provided by a reference knowledge resource (e.g., biomedical ontologies and thesauri) into a set of hierarchical dimensions for analysis purposes. The latter one reduces the annotation set associated to each collection item into a set of points of the multidimensional space. Additionally, we have developed a visual tool, called 3D-Browser, which implements OLAP-like operators over the generated multidimensional space. The method and the tool have been tested and evaluated in the context of the Health-e-Child (HeC) project. Automatic semantic annotation was applied to tag three collections of abstracts taken from PubMed, one for each target disease of the project, the Uniprot database, and the HeC patient record database. We adopted the UMLS Meta-thesaurus 2010AA as the reference knowledge resource. CONCLUSIONS: Current knowledge resources and semantic-aware technology make possible the integration of biomedical resources. Such an integration is performed through semantic annotation of the intended biomedical data resources. This paper shows how these annotations can be exploited for integration, exploration, and analysis tasks. Results over a real scenario demonstrate the viability and usefulness of the approach, as well as the quality of the generated multidimensional semantic spaces.  相似文献   

16.
17.
Biological systems by default involve complex components with complex relationships. To decipher how biological systems work, we assume that one needs to integrate information over multiple levels of complexity. The songbird vocal communication system is ideal for such integration due to many years of ethological investigation and a discreet dedicated brain network. Here we announce the beginnings of a songbird brain integrative project that involves high-throughput, molecular, anatomical, electrophysiological and behavioral levels of analysis. We first formed a rationale for inclusion of specific biological levels of analysis, then developed high-throughput molecular technologies on songbird brains, developed technologies for combined analysis of electrophysiological activity and gene regulation in awake behaving animals, and developed bioinformatic tools that predict causal interactions within and between biological levels of organization. This integrative brain project is fitting for the interdisciplinary approaches taken in the current songbird issue of the Journal of Comparative Physiology A and is expected to be conducive to deciphering how brains generate and perceive complex behaviors.  相似文献   

18.
In this paper we argue that molecular evolution, and the evolution of prebiotic and early biological systems are qualitatively different processes, in which a crucial role is played respectively by structural stability and by dynamical mechanisms of regulation and integration. These different features entail also distinct modalities of interaction between system and environment that need to be taken into consideration when discussing molecular and biological evolution and selection.  相似文献   

19.
Recent advances in applied physics and chemistry have led to the development of novel microfluidic systems. Microfluidic systems allow minute amounts of reagents to be processed using μm-scale channels and offer several advantages over conventional analytical devices for use in biological sciences: faster, more accurate and more reproducible analytical performance, reduced cell and reagent consumption, portability, and integration of functional components in a single chip. In this review, we introduce how microfluidics has been applied to biological sciences. We first present an overview of the fabrication of microfluidic systems and describe the distinct technologies available for biological research. We then present examples of microsystems used in biological sciences, focusing on applications in molecular and cellular biology.  相似文献   

20.
Computational systems biology is empowering the study of drug action. Studies on biological effects of chemical compounds have increased in scale and accessibility, allowing integration with other large-scale experimental data types. Here, we review computational approaches for elucidating the mechanisms of both intended and undesirable effects of drugs, with the collective potential to change the nature of drug discovery and pharmacological therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号