首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of various inducing agents on growth, synthesis and release of klebocin byKlebsiella pneumoniae was studied. A significant level of klebocin was detected only after induction. The highest level of klebocin was achieved with mitomycin C followed by rifampicin and polymyxin B. Chloramphenicol and UV irradiation did not show any effect on klebocin production. Maximum klebocin release occurred after 8 h of induction with all the agents. Concentration of mitomycin C did not show any significant effect on klebocin production.  相似文献   

2.
T Hara  M Matsuda  M Yoneda 《Biken journal》1977,20(3-4):105-115
Nontoxigenic derivatives of a toxigenic strain of Clostridium tetani were isolated gy treatment with acridine orange, N-methyl-N'-nitro-soguanidine, rifampicin or ultraviolet light. The frequency of appearance fo non-toxigenic derivatives on these treatments was 0.8 to 3.2 per cent. The nontoxigenic derivatives peoduced all the same extracellular antigenic and protein components as the toxigenic parent strain, except the toxin and materials cross-reacting with the toxin. The nontoxigenic strains, like the toxigenic parent strain, were lyzed by trratment with mitomycin C. Bacteriophage was detected in the lysates of all the nontoxigenic derivatives produced with mitomycin C, and this bacteriophage was morphologically indistinguishable from that obtained from the toxigenic parent strain. The genetic factor controlling tetanus toxin production is discussed.  相似文献   

3.
Abstract Several purple and green sulfur bacteria (genera Chromatium, Thiocapsa and Chlorobium ) were tested for their sensitivity to different antimicrobial agents by a disc diffusion assay, using thioacetamide as a source of hydrogen sulfide for plate growth. Chlorobium limicola strains were more sensitive to amoxicillin, erythromycin and nalidixic acid, whereas gentamicin and netilmicin were more active against the purple bacteria tested. None of the organisms were sensitive to oxacillin and trimethoprim + sulfamethoxazole. The critical concentrations at the edge of the inhibition zone were also calculated for three organisms and the antimicrobials colistin, mitomycin C, penicillin G, rifampicin, and streptomycin. The results obtained suggest that colistin, mitomycin C, penicillin G would provide selective conditions against the growth of Chlorobium limicola strains, while streptomycin and other aminoglycoside antibiotics would select against purple bacteria.  相似文献   

4.
The amino acid sequences of Thiobacillus novellus and Nitrobacter winogradskyi cytochromes c have been compared with those of cytochromes c from several other organisms. The two bacterial cytochromes resemble eukaryotic cytochromes c; 49 amino-acid residues are identical between T. novellus and horse cytochromes c, and 50 residues identical between N. winogradskyi and horse cytochromes c. However, their reactivity with cow cytochrome c oxidase is about 80% lower than the reactivity of eukaryotic cytochromes c with the cow mitochondrial oxidase, while they react with yeast cytochrome c peroxidase as rapidly as eukaryotic cytochromes c. The numbers of identical amino-acid residues between T. novellus and animal cytochromes c are 45-53 and those between N. winogradskyi and animal cytochromes c 47-53, while those between the two bacterial cytochromes and yeast and protozoan cytochromes c are around 40. Thus, N. winogradskyi and T. novellus cytochromes c are more similar to animal cytochromes c than to yeast and protozoan cytochromes c on the basis of the amino-acid sequence.  相似文献   

5.
T Yamanaka  M Shinra  K Kimura 《Bio Systems》1977,9(2-3):155-164
Nitrosomonas europaea and Thiobacillus novellus were compared with each other on the basis of the biochemical properties of their inorganic compound-oxidizing systems. Cytochromes c of the two organisms differ considerably from each other; N. europaea cytochrome c-552 belongs to the "bacterial-type" cytochrome c, while T. nouellus cytochrome c-550 resembles eucaryolic cytochrome c. The specificity of cytochrome oxidase for cytochrome c as the electron donor is different between the two organisms; T novellus oxidase reacts rapidly with cytochromes c of the organisms which seem to be higher than the organisms whose cytochromes c react rapidly with N. europaea oxidase. On the basis of these facts, N. europaea seems to be older organism than T. novellus in terms of evolution.  相似文献   

6.
Tang  Mingli  Zhang  Pingping  Zxu  Dejun  Wang  Li  Wu  Lijun 《Annals of microbiology》2009,59(4):815-821
In this work, we compared the SOS response induced by vacuum-drying, desiccation (wind-spray-drying) and low-energy ion beam mock-irradiation with that of mitomycin C, UV induction. The induction factor induced by vacuum-drying and low-energy ion beam mock-irradiation was relatively higher than that of desiccation in Sa194 and JC19008 strain, respectively. These findings revealed that the SOS response produced by low-energy ion beam mock-irradiation was mainly induced by the step of vacuum-drying, unlikely by the step of wind-spray-drying. The mutation frequencies of rifampicin resistance gene in AB1157 andlacI gene in W3110 increased significantly by vacuum treatment and low-energy ion beam mock-irradiation, but had no remarkable change by desiccation treatment. Meanwhile, the mutation frequency of rifampicin resistance gene in 1C400 strain was not significantly influenced by these treatments. These results implied that the SOS response played an important role in the mutations induced by vacuum treatment and low-energy ion beam mock-irradiation.  相似文献   

7.
We examined the effects of antibiotics involved in bacterial DNA, RNA and protein synthesis and host protein synthesis on the early infection process of the bacterium Holospora obtusa, a macronucleus-specific symbiont of the ciliate Paramecium caudatum. Infection of the host macronucleus by the bacterium was not inhibited by mitomycin C, rifampicin and chloramphenicol. However, ingestion of the bacterium into the host digestive vacuoles and escape of the bacterium from the vacuoles to the host cytoplasm were significantly arrested with emetine. The results suggest that newly synthesized host proteins play an important role in the early infection process.  相似文献   

8.
Sulfite oxidase activity in Thiobacillus novellus.   总被引:2,自引:1,他引:1       下载免费PDF全文
Thiobacillus novellus shows a maximum induction of sulfite oxidase activity and a maximum growth rate as a result of supplementing the autotrophic growth medium with 4.0 microM ammonium molybdate. Cells grown in the presence of molybdate showed approximately 10-fold increases in the amount of enzyme-associated molybdenum and in the sulfite-to-cytochrome c and sulfite-to-ferricyanide reductase activities. The effect of exogenous molybdate was not discernible with cells grown in the absence of thiosulfate. Tungsten inhibited the growth of T. novellus and the expression of sulfite oxidase activity.  相似文献   

9.
Thiobacillus novellus was cultivated in a chemostate under the individual limitations of thiosulfate, glucose, and thiosulfate plus glucose. At dilution rate (D) of 0.05 h-1 or lower, the steady-state biomass concentration in mixotrophic medium was additive of the heterotrophic and autotrophic biomass at corresponding D values. The ambient concentrations of thiosulfate, glucose, or both in the various cultures were low and were very similar in mixotrophic, heterotrophic, and autotrophic environments at a given D value. At D = 0.05 h-1, mixotrophic cells possessed higher activities of sulfite oxidase and thiosulfate oxidation compared to autotrophic cells, as well as higher activities of glucose enzymes and glucose oxidation than heterotrophic cells. Thus, in contrast to nutrient-excess conditions, in nutrient-limited mixotrophic environments at these D values, T. novellus did not exhibit characteristics of uncoupled substrate oxidation, inhibition of substrate utilization, and repression of enzymes of energy metabolism. It is concluded that T. novellus responds to mixotrophic growth conditions differently in environments of different nutritional status, and the ecological and physiological significance of this finding is discussed.  相似文献   

10.
11.
P L Moreau  M Fanica  R Devoret 《Biochimie》1980,62(10):687-694
In mitomycin C-treated lambda lysogens, even though the rate of synthesis of RecA protein was greatly reduced by a low concentration of rifampicin (4 microgram/ml), induction of prophage lambda occurred readily as assessed by (i) cell lysis of the lysogens, (ii) production of progeny phage, and (iii) extensive cleavage of lambda repressor. The extent and the rate of cleavage of lambda repressor were not significantly affected by the low rate of synthesis of RecA protein resulting from rifampicin action. However, the yield of phage progeny was reduced and lysis of the cells was slightly delayed. We conclude that in RecA+ bacteria, induction of prophage lambda does not require full induction of RecA protein synthesis.  相似文献   

12.
K Ueda  T Komano 《Nucleic acids research》1984,12(17):6673-6683
Mitomycin C reduced with sodium borohydride induced the DNA damage at deoxyguanosines preferentially in dinucleotide sequence G-T. The DNA damage produced strand breaks when subsequently heated. The DNA damage scarcely occurred when the end-labeled DNA was preincubated with ethidium bromide or actinomycin D before the addition of mitomycin C and the reducing agent. Fully reduced mitomycin C did not induce the DNA damage. The mitomycin C-inducing DNA damage seems to require the intercalation of the partially reduced mitomycin C of short life time, probably semiquinone radical, between DNA base pairs. The inhibitory effects of sodium chloride and radical scavengers suggested that the requirement of the covalent bond formation of mitomycin C to DNA and the involvement of oxygen radicals in the DNA damage. 7-N-(p-hydroxyphenyl)mitomycin C, which is reported to show a higher antitumor activity and a lower toxicity than mitomycin C, was readily reduced with dithiothreitol and induced the sequence-specific DNA damage, whereas mitomycin C was not.  相似文献   

13.
The anticancer drug mitomycin C produces cytotoxic effects after being converted to a highly reactive bis-electrophile by a reductive activation, a reaction that a number of 1-electron or 2-electron oxidoreductase enzymes can perform in cells. Several reports in the literature indicate that ascorbic acid can modulate the cytotoxic effects of mitomycin C, either potentiating or inhibiting its effects. As ascorbic acid is a reducing agent that is known to be able to reduce quinones, it could be possible that the observed modulatory effects are a consequence of a direct redox reduction between mitomycin C and ascorbate. To determine if this is the case, the reaction between mitomycin C and ascorbate was studied using UV/Vis spectroscopy and LC/MS. We also studied the reaction of ascorbate with mitomycin A, a highly toxic member of the mitomycin family with a higher redox potential than mitomycin C. We found that ascorbate is capable to reduce mitomycin A efficiently, but it reduces mitomycin C rather inefficiently. The mechanisms of activation have been elucidated based on the kinetics of the reduction and on the analysis of the mitosene derivatives formed after the reaction. We found that the activation occurs by the interplay of three different mechanisms that contribute differently, depending on the pH of the reaction. As the reduction of mitomycin C by ascorbate is rather inefficiently at physiologically relevant pH values we conclude that the modulatory effect of ascorbate on the cytotoxicity of mitomycin C is not the result of a direct redox reaction and therefore this modulation must be the consequence of other biochemical mechanisms.  相似文献   

14.
Mitomycin C is a natural product with potent alkylating activity, and it is an important anticancer drug and antibiotic. mitN, one of three genes with high similarity to methyltransferases, is located within the mitomycin biosynthetic gene cluster. An inframe deletion in mitN of the mitomycin biosynthetic pathway was generated in Streptomyces lavendulae to produce the DHS5373 mutant strain. Investigation of DHS5373 revealed continued production of mitomycin A and mitomycin C in addition to the accumulation of a new mitomycin analog, 9-epi-mitomycin C. The mitN gene was overexpressed in Escherichia coli, and the histidine-tagged protein (MitN) was purified to homogeneity. Reaction of 9-epi-mitomycin C with MitN in the presence of S-adenosylmethionine yielded mitomycin E showing that the enzyme functions as an aziridine N-methyltransferase. Likewise, MitN was also shown to convert mitomycin A to mitomycin F under the same reaction conditions. We conclude that MitN plays an important role in a parallel biosynthetic pathway leading to the subclass of mitomycins with 9alpha-stereochemistry but is not involved directly in the biosynthesis of mitomycins A and C.  相似文献   

15.
Cytochrome a-type terminal oxidases derived from Thiobacillus novellus and Nitrobacter agilis have been purified to a homogeneous state as judged from their electrophoretic behavior and their subunit structures studied by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The T. novellus enzyme is composed of two kinds of subunits of 32,000 and 23,000 daltons and its minimum molecular weight is 55,000 on the basis of heme content and amino acid composition. The N. agilis enzyme also has two kinds of subunits of 40,000 and 27,000 daltons and its minimum molecular weight is 66,000 on the basis of heme content and amino acid composition. Therefore, the molecule of each enzyme is composed of two kinds of subunits which resemble the subunits of the eukaryotic cytochrome oxidase biosynthesized in the mitochondrion at least with respect to molecular weight.  相似文献   

16.
Bateriophage (phi29, SPP1, or SPO1)-infected, toluene-treated minicells of Bacillus subtilis are capable of limited amounts of non-replicative DNA synthesis as measured by incorporation of [3H]dTTP into a trichloroacetic acid-precipitable form. The [3H]dTTP is covalently incorporated into small DNA fragments which result from the degradation of a small percentage of the infecting phage genomes (molecular weights in the range of 2 . 10(5)). Short exposure of the DNA molecules containing the incorporated [3H]dTMP to Escherichia coli exonuclease III results in over 90% of the E13H]dTMP being converted to a trichloroacetic acid-soluble form. The synthesis is totally dependent on host-cell enzymes and is not inhibited by the addition of chloramphenicol, rifampicin, nalidixic acid and mitomycin C and only slightly (approx. 20%) inhibited by the addition of 6-(p-hydroxyphenylazo)-uracil.  相似文献   

17.
头状轮生链霉菌中丝裂霉素C抗性基因的克隆及功能研究   总被引:1,自引:0,他引:1  
头状轮生链霉菌(\%Streptoverticillium caespitosus\%)ATCC27422是抗肿瘤药物丝裂霉素的主要产生菌,实验通过诱变筛选获得不产生丝裂霉素同时对丝裂霉素C敏感的阻断变种S6,并以它为受体宿主,以质粒pIJ699为载体,建立野生型头状轮生链霉菌菌株ATCC27422的基因库。采用鸟枪法克隆技术,从库中筛选获得含有丝裂霉素C抗性基因的62kb外源片段的克隆子。将含此外源片段的质粒pLX5导入变铅青链霉菌(\%Streptomyces lividans\%)获得表达。并且首次成功地运用电穿孔法将pLX5导入野生型菌株中,使其对丝裂霉素C的抗性大幅度提高:最低抑制浓度(MIC)由原来的200μg/mL上升至1000μg/mL以上。摇瓶发酵实验表明:单位菌量的ATCC27422(pLX5)的丝裂霉素产量高于野生菌株ATCC27422,因此丝裂霉素C抗性与产量之间存在一定的相关性。  相似文献   

18.
Mitomycin C requires reductive activation to cross-link DNA and express anticancer activity. Reduction of mitomycin C (40 microm) by sodium borohydride (200 microm) in 20 mm Tris-HCl, 1 mm EDTA at 37 degrees C, pH 7.4, gives a 50-60% yield of the reactive intermediate mitomycin C hydroquinone. The hydroquinone decays with first order kinetics or pseudo first order kinetics with a t(12) of approximately 15 s under these conditions. The cross-linking of T7 DNA in this system followed matching kinetics, with the conversion of mitomycin C hydroquinone to leuco-aziridinomitosene appearing to be the rate-determining step. Several peroxidases were found to oxidize mitomycin C hydroquinone to mitomycin C and to block DNA cross-linking to various degrees. Concentrations of the various peroxidases that largely blocked DNA cross-linking, regenerated 10-70% mitomycin C from the reduced material. Thus, significant quantities of products other than mitomycin C were produced by the peroxidase-mediated oxidation of mitomycin C hydroquinone or products derived therefrom. Variations in the sensitivity of cells to mitomycin C have been attributed to differing levels of activating enzymes, export pumps, and DNA repair. Mitomycin C hydroquinone-oxidizing enzymes give rise to a new mechanism by which oxic/hypoxic toxicity differentials and resistance can occur.  相似文献   

19.
Under anaerobic conditions and with proper electron donors, NADPH-cytochrome P-450 reductase (EC 1.6.2.4) and xanthine oxidase (EC 1.2.3.2) similarly reductively metabolized mitomycin C. Reversed phase high performance liquid chromatography was used to separate, detect, and isolate several metabolites. Three metabolites were identified by mass spectrometry and thin layer chromatography as 1,2-cis- and trans-2,7-diamino-1-hydroxymitosene and 2,7-diaminomitosene. Three metabolites were phosphate-dependent, and two of them were identified to be 1,2-cis- and trans-2,7-diaminomitosene 1-phosphate. The amounts of the five identified metabolites generated during the reduction of mitomycin C varied with pH and nucleophile concentration. At pH 6.5, 2,7-diaminomitosene was essentially the only metabolite formed, whereas from pH 6.8 to 8.0, trans- and cis-2,7-diamino-1-hydroxymitosene increased in quantity as 2,7-diaminomitosene decreased. The disappearance of mitomycin C and the production of metabolites were enzyme and mitomycin C concentration-dependent. Substrate saturation was not reached for either enzyme up to 5 mM mitomycin C. Electron paramagnetic resonance studies demonstrated the formation of mitomycin C radical anion as an intermediate during enzymatic activation. Our results indicate that either enzyme catalyzed the initial activation of mitomycin C to a radical anion intermediate. Subsequent spontaneous reactions, including the elimination of methanol and the opening of the aziridine ring, generate one active center at C-1 which facilitates nucleophilic attack. Simultaneous generation of two reactive centers was not observed. All five primary metabolites were metabolized further by either flavoenzyme. The secondary metabolites exhibited similar changes in their absorbance spectra and were unlike the primary metabolites, suggesting that a second alkylating center other than C-1 was generated during secondary activation. We propose that secondary activation of monofunctionally bound mitomycin C is probably a main route for the bifunctional binding of mitomycin C to macromolecules and that the cytotoxic actions of mitomycin C result from multiple metabolic activations and reactions.  相似文献   

20.
Host functions required for replication of progeny double-stranded DNA of bacteriophage G4 were examined by using metabolic inhibitors and Escherichia coli dna mutants. In dna+ bacteria, synthesis of the progeny replicative form (RF) was relatively resistant to 30 microgram/ml of chloramphenicol, but considerably sensitive to 200 microgram/ml of rifampicin. The RF replication was severely inhibited by 50 microgram/ml of mitomycin C, 50 microgram/ml of nalidixic acid, or 200 microgram/ml of novobiocin. At 41 degrees C, synthesis of G4 progeny RF was distinctly affected in a dnaC(D) mutant and in a dnaG host. The progeny RF replication was prevented at 42 degrees C in a dnaE strain as well as in a dnaB mutant. In a dnaZ strain, the synthetic rate of the progeny RF was markedly reduced at 42 degrees C. At 43 degrees C, the rate of G4 progeny RF synthesis was reduced even in dna+ or dnaA bacteria, but significant amounts of the progeny RF were still synthesized in these hosts at the high temperature. In addition to five dna gene products, host rep function was essential for the RF replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号