首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Freezing is a major environmental limitation to crop productivity for a number of species including legumes. We investigated the genetic determinism of freezing tolerance in the model legume Medicago truncatula Gaertn (M. truncatula). After having observed a large variation for freezing tolerance among 15 M. truncatula accessions, the progeny of a F6 recombinant inbred line population, derived from a cross between two accessions, was acclimated to low above-freezing temperatures and assessed for: (a) number of leaves (NOL), leaf area (LA), chlorophyll content index (CCI), shoot and root dry weights (SDW and RDW) at the end of the acclimation period and (b) visual freezing damage (FD) during the freezing treatment and 2 weeks after regrowth and foliar electrolyte leakage (EL) 2 weeks after regrowth. Consistent QTL positions with additive effects for FD were found on LG1, LG4 and LG6, the latter being the most explanatory (R 2 ≈ 40 %). QTL for NOL, QTL for EL, NOL and RDW, and QTL for EL and CCI colocalized with FD QTL on LG1, LG4 and LG6, respectively. Favorable alleles for these additive effects were brought by the same parent suggesting that this accession contributes to superior freezing tolerance by affecting plants’ capacity to maintain growth at low above-freezing temperatures. No epistatic effects were found between FD QTL, but for each of the studied traits, 3–6 epistatic effects were detected between loci not detected directly as QTL. These results open the way to the assessment of syntenic relationships between QTL for frost tolerance in M. truncatula and cultivated legume species.  相似文献   

3.
4.
Forage quality combines traits related to protein content and energy value. High-quality forages contribute to increase farm autonomy by reducing the use of energy or protein-rich supplements. Genetic analyses in forage legume species are complex because of their tetraploidy and allogamy. Indeed, no genetic studies of quality have been published at the molecular level on these species. Nonetheless, mapping populations of the model species M. truncatula can be used to detect QTL for forage quality. Here, we studied a crossing design involving four connected populations of M. truncatula. Each population was composed of ca. 200 recombinant inbred lines (RIL). We sought population-specific QTL and QTL explaining the whole design variation. We grew parents and RIL in a greenhouse for 2 or 3 seasons and analysed plants for chemical composition of vegetative organs (protein content, digestibility, leaf-to-stem ratio) and stem histology (stem cross-section area, tissue proportions). Over the four populations and all the traits, QTL were found on all chromosomes. Among these QTL, only four genomic regions, on chromosomes 1, 3, 7 and 8, contributed to explaining the variations in the whole crossing design. Surprisingly, we found that quality QTL were located in the same genomic regions as morphological QTL. We thus confirmed the quantitative inheritance of quality traits and tight relationships between quality and morphology. Our findings could be explained by a co-location of genes involved in quality and morphology. This study will help to detect candidate genes involved in quantitative variation for quality in forage legume species.  相似文献   

5.
Ascochyta blight caused by Didymella pinodes (formerly Mycosphaerella pinodes) is one of the most important fungal diseases of pea (Pisum sativum) worldwide that can also infect the model legume Medicago truncatula. The objective of this study was to identify quantitative trait loci (QTLs) controlling resistance to D. pinodes in M. truncatula. Response to D. pinodes was studied under controlled conditions in seedlings of a population derived from the cross J6 × F83005.5, two M. truncatula lines that are, respectively, resistant and susceptible to D. pinodes. A combined map using two different recombinant inbred line populations was then used to identify the genomic regions bearing putative QTLs and to improve the position of the QTLs. A single QTL associated with resistance to D. pinodes was detected on linkage group 2, explaining up to 13 % of the total phenotypic variation for relative disease severity against the pathogen. Two simple sequence repeat markers, MTE80 and mtic890 (3 cM apart) were the ones most significantly associated with the QTL. These markers are located in bacterial artifical chromosomes AC119409 and AC125474, respectively, both of them overlapping on M. truncatula chromosome 2. The integration of QTL analysis and genomics in M. truncatula will contribute to the development of new markers and facilitate the identification of candidate genes for Ascochyta blight resistance.  相似文献   

6.
7.

Key message

This is the first clear evidence of duplication and/or triplication of large chromosomal regions in a genome of a Genistoid legume, the most basal clade of Papilionoid legumes.

Abstract

Lupinus angustifolius L. (narrow-leafed lupin) is the most widely cultivated species of Genistoid legume, grown for its high-protein grain. As a member of this most basal clade of Papilionoid legumes, L. angustifolius serves as a useful model for exploring legume genome evolution. Here, we report an improved reference genetic map of L. angustifolius comprising 1207 loci, including 299 newly developed Diversity Arrays Technology markers and 54 new gene-based PCR markers. A comparison between the L. angustifolius and Medicago truncatula genomes was performed using 394 sequence-tagged site markers acting as bridging points between the two genomes. The improved L. angustifolius genetic map, the updated M. truncatula genome assembly and the increased number of bridging points between the genomes together substantially enhanced the resolution of synteny and chromosomal colinearity between these genomes compared to previous reports. While a high degree of syntenic fragmentation was observed that was consistent with the large evolutionary distance between the L. angustifolius and M. truncatula genomes, there were striking examples of conserved colinearity of loci between these genomes. Compelling evidence was found of large-scale duplication and/or triplication in the L. angustifolius genome, consistent with one or more ancestral polyploidy events.  相似文献   

8.
9.
Local adaptation, defined as higher fitness of local vs. nonlocal genotypes, is commonly identified in reciprocal transplant experiments. Reciprocally adapted populations display fitness trade‐offs across environments, but little is known about the traits and genes underlying fitness trade‐offs in reciprocally adapted populations. We investigated the genetic basis and adaptive significance of freezing tolerance using locally adapted populations of Arabidopsis thaliana from Italy and Sweden. Previous reciprocal transplant studies of these populations indicated that subfreezing temperature is a major selective agent in Sweden. We used quantitative trait locus (QTL) mapping to identify the contribution of freezing tolerance to previously demonstrated local adaptation and genetic trade‐offs. First, we compared the genomic locations of freezing tolerance QTL to those for previously published QTL for survival in Sweden, and overall fitness in the field. Then, we estimated the contributions to survival and fitness across both field sites of genotypes at locally adaptive freezing tolerance QTL. In growth chamber studies, we found seven QTL for freezing tolerance, and the Swedish genotype increased freezing tolerance for five of these QTL. Three of these colocalized with locally adaptive survival QTL in Sweden and with trade‐off QTL for overall fitness. Two freezing tolerance QTL contribute to genetic trade‐offs across environments for both survival and overall fitness. A major regulator of freezing tolerance, CBF2, is implicated as a candidate gene for one of the trade‐off freezing tolerance QTL. Our study provides some of the first evidence of a trait and gene that mediate a fitness trade‐off in nature.  相似文献   

10.
Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.  相似文献   

11.

Key message

We have identified QTLs for stomatal characteristics on chromosome II of faba bean by applying SNPs derived from M. truncatula , and have identified candidate genes within these QTLs using synteny between the two species.

Abstract

Faba bean (Vicia faba L.) is a valuable food and feed crop worldwide, but drought often limits its production, and its genome is large and poorly mapped. No information is available on the effects of genomic regions and genes on drought adaptation characters such as stomatal characteristics in this species, but the synteny between the sequenced model legume, Medicago truncatula, and faba bean can be used to identify candidate genes. A mapping population of 211 F5 recombinant inbred lines (Mélodie/2 × ILB 938/2) were phenotyped to identify quantitative trait loci (QTL) affecting stomatal morphology and function, along with seed weight, under well-watered conditions in a climate-controlled glasshouse in 2013 and 2014. Canopy temperature (CT) was evaluated in 2013 under water-deficit (CTd). In total, 188 polymorphic single nucleotide polymorphisms (SNPs), developed from M. truncatula genome data, were assigned to nine linkage groups that covered ~928 cM of the faba bean genome with an average inter-marker distance of 5.8 cM. 15 putative QTLs were detected, of which eight (affecting stomatal density, length and conductance and CT) co-located on chromosome II, in the vicinity of a possible candidate gene—a receptor-like protein kinase found in the syntenic interval of M. truncatula chromosome IV. A ribose-phosphate pyrophosphokinase from M. truncatula chromosome V, postulated as a possible candidate gene for the QTL for CTd, was found some distance away in the same chromosome. These results demonstrate that genomic information from M. truncatula can successfully be translated to the faba bean genome.  相似文献   

12.
Legumes (Fabaceae) are unique in their ability to enter into an elaborate symbiosis with nitrogen-fixing rhizobial bacteria. Rhizobia-legume (RL) symbiosis represents one of the most productive nitrogen-fixing systems and effectively renders the host plants to be more or less independent of other nitrogen sources. Due to high protein content, legumes are among the most economically important crop families. Beyond that, legumes consist of over 16,000 species assigned to 650 genera. In most cases, the genomes of legumes are large and polyploid, which originally did not predestine these plants as genetic model systems. It was not until the early 1990th that Medicago truncatula was selected as the model plant for studying Fabaceae biology. M. truncatula is closely related to many economically important legumes and therefore its investigation is of high relevance for agriculture. Recently, quite a number of studies were published focussing on in depth characterizations of the M. truncatula proteome. The present review aims to summarize these studies, especially those which focus on the root system and its dynamic changes induced upon symbiotic or pathogenic interactions with microbes.  相似文献   

13.
14.
In many legume crops, especially in forage legumes, aerial morphogenesis defined as growth and development of plant organs, is an essential trait as it determines plant and seed biomass as well as forage quality (protein concentration, dry matter digestibility). Medicago truncatula is a model species for legume crops. A set of 29 accessions of M. truncatula was evaluated for aerial morphogenetic traits. A recombinant inbred lines (RILs) mapping population was used for analysing quantitative variation in aerial morphogenetic traits and QTL detection. Genes described to be involved in aerial morphogenetic traits in other species were mapped to analyse co-location between QTLs and genes. A large variation was found for flowering date, morphology and dynamics of branch elongation among the 29 accessions and within the RILs population. Flowering date was negatively correlated to main stem and branch length. QTLs were detected for all traits, and each QTL explained from 5.2 to 59.2% of the phenotypic variation. A QTL explaining a large part of genetic variation for flowering date and branch growth was found on chromosome 7. The other chromosomes were also involved in the variation detected in several traits. Mapping of candidate genes indicates a co-location between a homologue of Constans gene or a flowering locus T (FT) gene and the QTL of flowering date on chromosome 7. Other candidate genes for several QTLs are described. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
In legumes, symbiotic nitrogen (N) fixation (SNF) occurs in specialized organs called nodules after successful interactions between legume hosts and rhizobia. In a nodule, N-fixing rhizobia are surrounded by symbiosome membranes, through which the exchange of nutrients and ammonium occurs between bacteria and the host legume. Phosphorus (P) is an essential macronutrient, and N2-fixing legumes have a higher requirement for P than legumes grown on mineral N. As in the previous studies, in P deficiency, barrel medic (Medicago truncatula) plants had impaired SNF activity, reduced growth, and accumulated less phosphate in leaves, roots, and nodules compared with the plants grown in P sufficient conditions. Membrane lipids in M. truncatula tissues were assessed using electrospray ionization–mass spectrometry. Galactolipids were found to increase in P deficiency, with declines in phospholipids (PL), especially in leaves. Lower PL losses were found in roots and nodules. Subsequently, matrix-assisted laser desorption/ionization–mass spectrometry imaging was used to spatially map the distribution of the positively charged phosphatidylcholine (PC) species in nodules in both P-replete and P-deficient conditions. Our results reveal heterogeneous distribution of several PC species in nodules, with homogeneous distribution of other PC classes. In P poor conditions, some PC species distributions were observed to change. The results suggest that specific PC species may be differentially important in diverse nodule zones and cell types, and that membrane lipid remodeling during P stress is not uniform across the nodule.

ESI–MS and matrix-assisted laser desorption ionization–mass spectrometry imaging reveal alterations in Medicago truncatula nodules membrane lipid composition and spatial distribution in phosphorus deficiency.  相似文献   

16.

Key message

Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea.

Abstract

The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9–71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.  相似文献   

17.
Medicago truncatula, as a model species, is useful to study the genetic control of traits of agronomic interest in legumes species. Aerial morphogenesis is a key component of forage and seed yield. It was measured in four mapping populations originating from five parental lines. Single and multi-population quantitative trait locus (QTL) detections were carried out. A large variation was observed within populations and transgressive segregation was noted. Most traits showed high heritabilities in all seasons. Length of primary branches (LPB, cm) was positively correlated to branch elongation rate (BER, cm day−1) and aerial dry matter (ADM, g). Flowering time (FT, °C day−1) showed negative correlations with length of main stem (LMS, cm) and BER. One hundred and forty-one QTLs for BER, LMS, FT, LPB, diameter of primary branches (DPB), number of primary branches (NPB), number of nodes (NI) and ADM were identified and localized over all eight chromosomes. Single and multi-population analyses showed that the most important regions for aerial morphogenetic traits were chromosomes 1, 2, 7 and 8. Multi-population analysis revealed three regions of major QTLs affecting aerial morphogenetic traits (LPB, LMS, NPB, BER and FT). A region involved in flowering time variation was revealed on chromosome 6 on a single population. These results were used to identify candidate genes that could control variation for aerial morphogenesis traits in this species and in related crop legume species.  相似文献   

18.
In eastern Australia and California, USA, one of the major lethal fungal diseases of lucerne (Medicago sativa) is Stagonospora root and crown rot, caused by Stagonospora meliloti. Quantitative trait loci (QTL) involved in resistance and susceptibility to S. meliloti were identified in an autotetraploid lucerne backcross population of 145 individuals. Using regression analysis and interval mapping, we detected one region each on linkage groups 2, 6 and 7 that were consistently associated with disease reaction to S. meliloti in two separate experiments. The largest QTL on linkage group 7, which is associated with resistance to S. meliloti, contributed up to 17% of the phenotypic variation. The QTL located on linkage group 2, which is potentially a resistance allele in repulsion to the markers for susceptibility to S. meliloti, contributed up to 8% of the phenotypic variation. The QTL located on linkage group 6, which is associated with susceptibility to S. meliloti, contributed up to 16% of the phenotypic variation. A further two unlinked markers contributed 5 and 8% of the phenotypic variation, and were detected in only one experiment. A total of 517 simple sequence repeat (SSR) markers from Medicago truncatula were screened on the parents of the mapping population. Only 27 (6%) SSR markers were polymorphic and could be incorporated into the autotetraploid map of M. sativa. This allowed alignment of our M. sativa linkage map with published M. truncatula maps. The markers linked to the QTL we have reported will be useful for marker assisted selection for partial resistance to S. meliloti in lucerne.  相似文献   

19.
Medicago truncatula is used as a model plant for exploring the genetic and molecular determinants of nitrogen (N) nutrition in legumes. In this study, our aim was to detect quantitative trait loci (QTL) controlling plant N nutrition using a simple framework of carbon/N plant functioning stemming from crop physiology. This framework was based on efficiency variables which delineated the plant’s efficiency to take up and process carbon and N resources. A recombinant inbred line population (LR4) was grown in a glasshouse experiment under two contrasting nitrate concentrations. At low nitrate, symbiotic N2 fixation was the main N source for plant growth and a QTL with a large effect located on linkage group (LG) 8 affected all the traits. Significantly, efficiency variables were necessary both to precisely localize a second QTL on LG5 and to detect a third QTL involved in epistatic interactions on LG2. At high nitrate, nitrate assimilation was the main N source and a larger number of QTL with weaker effects were identified compared to low nitrate. Only two QTL were common to both nitrate treatments: a QTL of belowground biomass located at the bottom of LG3 and another one on LG6 related to three different variables (leaf area, specific N uptake and aboveground:belowground biomass ratio). Possible functions of several candidate genes underlying QTL of efficiency variables could be proposed. Altogether, our results provided new insights into the genetic control of N nutrition in M. truncatula. For instance, a novel result for M. truncatula was identification of two epistatic interactions in controlling plant N2 fixation. As such this study showed the value of a simple conceptual framework based on efficiency variables for studying genetic determinants of complex traits and particularly epistatic interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号