首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
The extreme resistance to Turnip mosaic virus observed in the Chinese cabbage (Brassica rapa) line, BP8407, is monogenic and recessive. Bulked segregant analysis was carried out to identify simple sequence repeat and Indel markers linked to this recessive resistance gene, termed recessive Turnip mosaic virus resistance 02 (retr02). Mapping of PCR-specific Indel markers on 239 individuals of a BP8407 × Ji Zao Chun F2 population, located this resistance gene to a 0.9-cM interval between two Indel markers (BrID10694 and BrID101309) and in scaffold000060 or scaffold000104 on chromosome A04 of the B. rapa genome. Eleven eukaryotic initiation factor 4E (eIF4E) and 14 eukaryotic initiation factor 4G (eIF4G) genes are predicted in the B. rapa genome. A candidate gene, Bra035393 on scaffold000104, was predicted within the mapped resistance locus. The gene encodes the eIF(iso)4E protein. Bra035393 was sequenced in BP8407 and Ji Zao Chun. A polymorphism (A/G) was found in exon 3 between BP8407 and Ji Zao Chun. This gene was analysed in four resistant and three susceptible lines. A correlation was observed between the amino acid substitution (Gly/Asp) in the eIF(iso)4E protein and resistance/susceptibility. eIF(iso)4E has been shown previously to interact with the TuMV genome-linked protein, VPg.  相似文献   

2.
Recessive strain‐specific resistance to a number of plant viruses in the Potyvirus genus has been found to be based on mutations in the eukaryotic translation initiation factor 4E (eIF4E) and its isoform, eIF(iso)4E. We identified three copies of eIF(iso)4E in a number of Brassica rapa lines. Here we report broad‐spectrum resistance to the potyvirus Turnip mosaic virus (TuMV) due to a natural mechanism based on the mis‐splicing of the eIF(iso)4E allele in some TuMV‐resistant B. rapa var. pekinensis lines. Of the splice variants, the most common results in a stop codon in intron 1 and a much truncated, non‐functional protein. The existence of multiple copies has enabled redundancy in the host plant's translational machinery, resulting in diversification and emergence of the resistance. Deployment of the resistance is complicated by the presence of multiple copies of the gene. Our data suggest that in the B. rapa subspecies trilocularis, TuMV appears to be able to use copies of eIF(iso)4E at two loci. Transformation of different copies of eIF(iso)4E from a resistant B. rapa line into an eIF(iso)4E knockout line of Arabidopsis thaliana proved misleading because it showed that, when expressed ectopically, TuMV could use multiple copies which was not the case in the resistant B. rapa line. The inability of TuMV to access multiple copies of eIF(iso)4E in B. rapa and the broad spectrum of the resistance suggest it may be durable.  相似文献   

3.
The protein–protein interaction between VPg (viral protein genome‐linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad‐spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge‐based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap‐binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap‐binding pockets, and mutated. Yeast two‐hybrid assay and co‐immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E‐knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild‐type were over‐expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over‐expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge‐based approaches for the engineering of broad‐spectrum resistance in Chinese cabbage.  相似文献   

4.
5.
Clubroot disease is one of the major diseases affecting Brassicaceae crops, and a number of these crops grown commercially, such as Chinese cabbage (Brassica rapa L. ssp. pekinensis), are known to be highly susceptible to clubroot disease. To provide protection from this disease, plant breeders have introduced genes for resistance to clubroot from the European turnip into susceptible lines. The CRa gene confers specific resistance to the clubroot pathogen Plasmodiophora brassicae isolate M85. Fine mapping of the CRa locus using synteny to the Arabidopsis thaliana genome and partial genome sequences of B. rapa revealed a candidate gene encoding a TIR-NBS-LRR protein. Several structural differences in this candidate gene were found between susceptible and resistant lines, and CRa expression was observed only in the resistant line. Four mutant lines lacking clubroot resistance were obtained by the UV irradiation of pollen from a resistant line, and all of these mutant lines carried independent mutations in the candidate TIR-NBS-LRR gene. This genetic and molecular evidence strongly suggests that the identified gene is CRa. This is the first report on the molecular characterization of a clubroot Resistance gene in Brassicaceae and of the disease resistance gene in B. rapa.  相似文献   

6.

Key message

A novel dominant resistance gene, TuRB07, was found to confer resistance to an isolate of TuMV strain C4 in B. rapa line VC1 and mapped on the top of chromosome A06.

Abstract

The inheritance of resistance to Turnip mosaic virus in Brassica rapa was investigated by crossing the resistant line, VC1 with the susceptible line, SR5, and genotyping and phenotyping diverse progenies derived from this cross. Both a doubled haploid population, VCS3M-DH, an F2 and two BC1 (F1 × VC1 and F1 × SR5) populations were created. Population tests revealed that the resistance to the TuMV C4 isolate in B. rapa is controlled by a single dominant gene. This resistance gene, TuRB07 was positioned on the top of linkage group A06 of the B. rapa genome through bulk segregation analysis and fine mapping recombinants in three doubled haploid- and one backcross population using microsatellite markers developed from BAC end sequences. Within the region between the two closely linked markers flanking TuRB07, H132A24-s1, and KS10960, in the Chiifu reference genome, two genes encoding nucleotide-binding site and leucine-rich repeat proteins with a coiled-coil motif (CC-NBS-LRR), Bra018862 and Bra018863 were identified as candidate resistance genes. The gene Bra018862 is truncated, but the gene Bra018863 has all the domains to function. Furthermore, the analysis of structural variation using resequencing data of VC1 and SR5 revealed that Bra018863 might be a functional gene because the gene has no structural variation in the resistant line VC1 when compared with Chiifu, whereas at the other NBS-LRR genes large deletions were identified in the resistant line. Allelic differences of Bra018863 were found between VC1 and SR5, supporting the notion that this gene is a putative candidate gene for the virus resistance.  相似文献   

7.
Turnip mosaic virus (TuMV) is the major virus infecting Brassica crops. A dominant gene, TuRB01, that confers extreme resistance to some isolates of TuMV on Brassica napus (oilseed rape), has been mapped genetically. The mapping employed a set of doubled-haploid lines extracted from a population used previously to develop a reference RFLP map of the B. napus genome. The positioning of TuRB01 on linkage group N6 of the B. napus A–genome indicated that the gene probably originated from Brassica rapa. Resistance phenotypes were confirmed by indirect plate-trapped antigen ELISA using a monoclonal antibody raised against TuMV. The specificity of TuRB01 was determined using a wide range of TuMV isolates, including representatives of the European and American/Taiwanese pathotyping systems. Some isolates of TuMV that did not normally infect B. napus plants possessing TuRB01 produced mutant viruses able to overcome the action of the resistance gene. TuRB01 is the first gene for host resistance to TuMV to be mapped in a Brassica crop. A second locus, TuRB02, that appeared to control the degree of susceptibility to the TuMV isolate CHN 1 in a quantitative manner, was identified on the C-genome linkage group N14. The mapping of other complementary genes and the selective combining of such genes, using marker-assisted breeding, will make durable resistance to TuMV a realisable breeding objective. Received: 14 December 1998 / Accepted: 10 April 1999  相似文献   

8.
Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans is an important disease of Brassica worldwide. To identify a resistance (R) gene against Fusarium yellows in Chinese cabbage (Brassica rapa var. pekinensis), we analyzed differential expression at the whole genome level between resistant and susceptible inbred lines using RNA sequencing. Four hundred and eighteen genes were significantly differentially expressed, and these were enriched for genes involved in response to stress or stimulus. Seven dominant DNA markers at putative R-genes were identified. Presence and absence of the sequence of the putative R-genes, Bra012688 and Bra012689, correlated with the resistance of six inbred lines and susceptibility of four inbred lines, respectively. In F2 populations derived from crosses between resistant and susceptible inbred lines, presence of Bra012688 and Bra012689 cosegregated with resistance, suggesting that Bra012688 and Bra012689 are good candidates for fusarium yellows resistance in Chinese cabbage.  相似文献   

9.
Plum pox virus (PPV) causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso)4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso)4E genes were cloned from plum (Prunus domestica L.). The sequence identity between plum eIF4E and eIF(iso)4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso)4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso)4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso)4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso)4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso)4E is involved in PPV infection in plum, and that silencing of eIF(iso)4E expression can lead to PPV resistance in Prunus species.  相似文献   

10.
The Arabidopsis thaliana-potyvirus system was developed to identify compatibility and incompatibility factors involved during infection and disease caused by positive-strand RNA viruses. Several Arabidopsis mutants with increased susceptibility to Tobacco etch potyvirus (TEV) were isolated previously, revealing a virus-specific resistance system in the phloem. In this study, Arabidopsis mutants with decreased susceptibility to Turnip mosaic potyvirus (TuMV) were isolated. Three independent mutants that conferred immunity to TuMV were isolated and assigned to the same complementation group. These mutants were also immune or near-immune to TEV but were susceptible to an unrelated virus. The locus associated with decreased susceptibility was named loss-of-susceptibility to potyviruses 1 (lsp1). The LSP1 locus was isolated by map-based cloning and was identified as the gene encoding translation factor eIF(iso)4E, one of several known Arabidopsis isoforms that has cap binding activity. eIF4E and eIF(iso)4E from different plant species were shown previously to interact with the genome-linked protein (VPg) of TEV and TuMV, respectively. Models to explain the roles of eIF(iso)4E during virus infection are presented.  相似文献   

11.
A new source of resistance to the pathotype 4 isolate of Turnip mosaic virus (TuMV) CDN 1 has been identified in Brassica napus (oilseed rape). Analysis of segregation of resistance to TuMV isolate CDN 1 in a backcross generation following a cross between a resistant and a susceptible B. napus line showed that the resistance was dominant and monogenic. Molecular markers linked to this dominant resistance were identified using amplified fragment length polymorphism (AFLP) and microsatellite bulk segregant analysis. Bulks consisted of individuals from a BC1 population with the resistant or the susceptible phenotype following challenge with CDN 1. One AFLP and six microsatellite markers were associated with the resistance locus, named TuRB03, and these mapped to the same region on chromosome N6 as a previously mapped TuMV resistance gene TuRB01. Further testing of TuRB03 with other TuMV isolates showed that it was not effective against all pathotype 4 isolates. It was effective against some, but not all pathotype 3 isolates tested. It provided further resolution of TuMV pathotypes by sub-dividing pathotypes 3 and 4. TuRB03 also provides a new source of resistance for combining with other resistances in our attempts to generate durable resistance to this virus.  相似文献   

12.

Background

The eukaryotic translation initiation factor eIF4E plays a key role in plant-potyvirus interactions. eIF4E belongs to a small multigenic family and three genes, eIF4E1, eIF4E2 and eIF(iso)4E, have been identified in tomato. It has been demonstrated that eIF4E-mediated natural recessive resistances against potyviruses result from non-synonymous mutations in an eIF4E protein, which impair its direct interaction with the potyviral protein VPg. In tomato, the role of eIF4E proteins in potyvirus resistance is still unclear because natural or induced mutations in eIF4E1 confer only a narrow resistance spectrum against potyviruses. This contrasts with the broad spectrum resistance identified in the natural diversity of tomato. These results suggest that more than one eIF4E protein form is involved in the observed broad spectrum resistance.

Methodology/Principal Findings

To gain insight into the respective contribution of each eIF4E protein in tomato-potyvirus interactions, two tomato lines silenced for both eIF4E1 and eIF4E2 (RNAi-4E) and two lines silenced for eIF(iso)4E (RNAi-iso4E) were obtained and characterized. RNAi-4E lines are slightly impaired in their growth and fertility, whereas no obvious growth defects were observed in RNAi-iso4E lines. The F1 hybrid between RNAi-4E and RNAi-iso4E lines presented a pronounced semi-dwarf phenotype. Interestingly, the RNAi-4E lines silenced for both eIF4E1 and eIF4E2 showed broad spectrum resistance to potyviruses while the RNAi-iso4E lines were fully susceptible to potyviruses. Yeast two-hybrid interaction assays between the three eIF4E proteins and a set of viral VPgs identified two types of VPgs: those that interacted only with eIF4E1 and those that interacted with either eIF4E1 or with eIF4E2.

Conclusion/Significance

These experiments provide evidence for the involvement of both eIF4E1 and eIF4E2 in broad spectrum resistance of tomato against potyviruses and suggest a role for eIF4E2 in tomato-potyvirus interactions.  相似文献   

13.
Two virus resistance loci on linkage groups II and VI have provided the only sources of natural resistance against Pea seed-borne mosaic virus (PSbMV, Potyviridae) in the important crop plant Pisum sativum L. A combination of parallel approaches was used to collate linked markers, particularly for sbm-1 resistance on linkage group VI. We have identified sequences derived from the genes for the eukaryotic translation initiation factors eIF4E and eIF(iso)4E as being very tightly linked to the resistance gene clusters on linkage groups VI and II, respectively. In particular, no recombinants between sbm-1 and eIF4E were found amongst 500 individuals of an F2 cross between the BC4 resistant line (JI1405) and its recurrent susceptible parent Scout. In a different mapping population, the gene eIF(iso)4E was also shown to be linked to sbm-2 on linkage group II. A parallel cDNA-AFLP comparison of pairs of resistant and susceptible lines also identified an expressed tag marker just 0.7 cM from sbm-1. eIF4E and eIF(iso)4E have been associated with resistance to related viruses in other hosts. This correlation strengthens the use of our markers as valuable tools to assist in breeding multiple virus resistances into peas, and identifies potential targets for resistance gene identification in pea.Communicated by C. Möllers  相似文献   

14.
Members of the eukaryotic translation initiation factor (eIF) gene family, including eIF4E and its paralogue eIF(iso)4E, have previously been identified as recessive resistance alleles against various potyviruses in a range of different hosts. However, the identification and introgression of these alleles into important crop species is often limited. In this study, we utilise CRISPR/Cas9 technology to introduce sequence‐specific deleterious point mutations at the eIF(iso)4E locus in Arabidopsis thaliana to successfully engineer complete resistance to Turnip mosaic virus (TuMV), a major pathogen in field‐grown vegetable crops. By segregating the induced mutation from the CRISPR/Cas9 transgene, we outline a framework for the production of heritable, homozygous mutations in the transgene‐free T2 generation in self‐pollinating species. Analysis of dry weights and flowering times for four independent T3 lines revealed no differences from wild‐type plants under standard growth conditions, suggesting that homozygous mutations in eIF(iso)4E do not affect plant vigour. Thus, the established CRISPR/Cas9 technology provides a new approach for the generation of Potyvirus resistance alleles in important crops without the use of persistent transgenes.  相似文献   

15.
Oilseed rape (Brassica napus) lines transformedwith the coat protein (CP) gene of Turnip mosaic virus(TuMV) were used to determine the effectiveness of resistance to TuMV mediatedby CP RNA or coat protein. Lines with one, two, or more copies of transgeneswere produced. T2 and T3 lines containing the CP genewitha functional start codon synthesised coat protein and showed high, but variablelevels of resistance to TuMV (21–96% resistant plants per line). TheT1 and T2 progeny of all lines carrying the CP gene withamutated start codon so that RNA but not protein was expressed, were assusceptible to TuMV as controls. Thus, in these experiments we were able toinduce CP-mediated resistance, but not RNA-mediated resistance.  相似文献   

16.
Two genes coding for eukaryotic translation initiation factors, eIF4E.a and eIF4E.c, were isolated from twelve accessions of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Polymorphism analysis revealed that 94 and 142 polymorphic sites were characterized from allele of BraeIF4E.a and BraeIF4E.c which produced complex haplotype structures. Six novel haplotypes were characterized from the two alleles respectively. Among the six novel haplotypes of BraeIF4E.a, three loss-of-function mutations were identified in which a conserved single nucleotide deletion mutation cause the early termination of BraeIF4E.a coding product; while for six new BraeIF4E.c haplotypes, their coding product show amino acid substitution mutations on non-conservative amino acid residues which might affect TuMV infection in Chinese cabbage.  相似文献   

17.
18.
Blackleg, caused by Leptosphaeria maculans, is one of the most economically important diseases of Brassica napus worldwide. Two blackleg-resistant lines, 16S and 61446, were developed through interspecific hybridization between B. napus and B. rapa subsp. sylvestris and backcrossing to B. napus. Classical genetic analysis demonstrated that a single recessive gene in both lines conferred resistance to L. maculans and that the resistance alleles were allelic. Using BC1 progeny derived from each resistant plant, this locus was mapped to B. napus linkage group N6 and was flanked by microsatellite markers sN2189b and sORH72a in an interval of about 10 cM, in a region equivalent to about 6 Mb of B. rapa DNA sequence. This new resistance gene locus was designated as LepR4. The two lines were evaluated for resistance to a wide range of L. maculans isolates using cotyledon inoculation tests under controlled environment conditions, and for stem canker resistance in blackleg field nurseries. Results indicated that line 16S, carrying LepR4a, was highly resistant to all isolates tested on cotyledons and had a high level of stem canker resistance under field conditions. Line 61446, carrying LepR4b, was only resistant to some of the isolates tested on cotyledons and was weakly resistant to stem canker under field conditions.  相似文献   

19.
The interaction between the viral protein linked to the genome (VPg) of turnip mosaic potyvirus (TuMV) and the translation eukaryotic initiation factor eIF(iso)4E of Arabidopsis thaliana has previously been reported. eIF(iso)4E binds the cap structure (m(7)GpppN, where N is any nucleotide) of mRNAs and has an important role in the regulation in the initiation of translation. In the present study, it was shown that not only did VPg bind eIF(iso)4E but it also interacted with the eIF4E isomer of A. thaliana as well as with eIF(iso)4E of Triticum aestivum (wheat). The interaction domain on VPg was mapped to a stretch of 35 amino acids, and substitution of an aspartic acid residue found within this region completely abolished the interaction. The cap analogue m(7)GTP, but not GTP, inhibited VPg-eIF(iso)4E complex formation, suggesting that VPg and cellular mRNAs compete for eIF(iso)4E binding. The biological significance of this interaction was investigated. Brassica perviridis plants were infected with a TuMV infectious cDNA (p35Tunos) and p35TuD77N, a mutant which contained the aspartic acid substitution in the VPg domain that abolished the interaction with eIF(iso)4E. After 20 days, plants bombarded with p35Tunos showed viral symptoms, while plants bombarded with p35TuD77N remained symptomless. These results suggest that VPg-eIF(iso)4E interaction is a critical element for virus production.  相似文献   

20.
We show here that the pvr2 locus in pepper, conferring recessive resistance against strains of potato virus Y (PVY), corresponds to a eukaryotic initiation factor 4E (eIF4E) gene. RFLP analysis on the PVY-susceptible and resistant pepper cultivars, using an eIF4E cDNA from tobacco as probe, revealed perfect map co-segregation between a polymorphism in the eIF4E gene and the pvr2 alleles, pvr2(1) (resistant to PVY-0) and pvr2(2) (resistant to PVY-0 and 1). The cloned pepper eIF4E cDNA encoded a 228 amino acid polypeptide with 70-86% nucleotide sequence identity with other plant eIF4Es. The sequences of eIF4E protein from two PVY-susceptible cultivars were identical and differed from the eIF4E sequences of the two PVY-resistant cultivars Yolo Y (YY) (pvr2(1)) and FloridaVR2 (F) (pvr2(2)) at two amino acids, a mutation common to both resistant genotypes and a second mutation specific to each. Complementation experiments were used to show that the eIF4E gene corresponds to pvr2. Thus, potato virus X-mediated transient expression of eIF4E from susceptible cultivar Yolo Wonder (YW) in the resistant genotype YY resulted in loss of resistance to subsequent PVY-0 inoculation and transient expression of eIF4E from YY (resistant to PVY-0; susceptible to PVY-1) rendered genotype F susceptible to PVY-1. Several lines of evidence indicate that interaction between the potyvirus genome-linked protein (VPg) and eIF4E are important for virus infectivity, suggesting that the recessive resistance could be due to incompatibility between the VPg and eIF4E in the resistant genotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号