首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of visual selection in the early generations of a potato breeding programme is examined. Tubers from 571 potato genotypes were scored by four breeders after being grown, from true seed, in a glasshouse and in the field for three consecutive years. The four breeders were in good agreement as to which clones would be selected in any environment. The association between breeders was greatest when the clones were grown in plots in the field. All correlations of breeders' preferences between different environments were significantly greater than zero, but only accounted for a small percentage of the total variation. Selection in both the glasshouse and first clonal year produced a desirable response. However, such selection carried a high cost in terms of losing clones with commercial potential. Comparison of a random sample of clones with ones from the same crosses which had been selected, indicated that selection in the glasshouse and first clonal year was at best random with some suggestion, however, of a negative effect.  相似文献   

2.
Single large-scale marker-assisted selection (SLS-MAS)   总被引:15,自引:0,他引:15  
This paper presents a new approach for plant improvement that interactively combines the use of DNA markers and conventional breeding. This approach involves selecting plants at early generation with a fixed, favorable genetic background at specific loci, conducting a single large-scale marker-assisted selection (SLS-MAS) while maintaining as much as possible the allelic segregation in the rest of the genome. First, the identification of elite lines presenting high allelic complementarity and being outstanding for traits of interest is required to capture favorable alleles from different parental lines. Second, after identification of the most favorable genomic regions for each selected parental line, those lines are intercrossed to develop segregating populations from which plants homozygous for favorable alleles at target loci are selected. One objective of the scheme is to conduct the marker-assisted selection only once, and it requires the selection of a minimum number of plants to maintain sufficient allelic variability at the unselected loci. Therefore, the selection pressure exerted on the segregating population is quite high and the screening of large populations is required to achieve the objectives of the scheme. No selection is applied outside the target genomic regions, to maintain as much as possible the Mendelian allelic segregation among the selected genotypes. After selection with DNA markers, the genetic diversity at un-selected loci may allow breeders to generate new varieties and hybrids through conventional breeding in response to various local needs. Although the single large-scale MAS scheme described here is oriented toward maize and large-scale breeding programs with substantial resources, the flexibility of this scheme would allow breeding programs to develop options compatible with local resources.  相似文献   

3.

Key message

Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain.

Abstract

Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.  相似文献   

4.
More on the efficiency of marker-assisted selection   总被引:26,自引:0,他引:26  
 Computer simulations were used to study the efficiency of marker-assisted selection (MAS) based on an index combining the phenotypic value and the molecular score of individuals. The molecular score is computed from the effects attributed to markers by multiple regression of phenotype on marker genotype. The results show that in the first generation the ratio RE of the expected efficiency of MAS over the expected efficiency of purely phenotypic selection generally increases when considering: (1) larger population sizes, (2) lower heritability values of the trait, and (3) a higher type-I error risk of the regression. This is consistent with previously published results. However, at low heritabilities our results point out that response to MAS is more variable than response to phenotypic selection. Hence, when the difference of genetic gains is considered instead of their ratio, RE, the heritability values corresponding to maximal advantage of using MAS rather than phenotypic selection are still low, but higher than predicted based on RE. The study over several successive generations of the rate of fixation of QTLs shows that the higher efficiency of MAS on QTLs with large effects in early generations is balanced by a higher rate of fixation of unfavourable alleles at QTLs with small effects in later generations. This explains why MAS may become less efficient than phenotypic selection in the long term. MAS efficiency therefore depends on the genetic determinism of the trait. Finally, we investigate a modified MAS method involving an alternation of selection on markers with and without phenotypic evaluation. Our results indicate that such a selection method could at low cost, provide an important increase in the genetic gain per unit of time in practical breeding programs. Received: 11 July 1997 / Accepted: 4 August 1997  相似文献   

5.
The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.  相似文献   

6.
Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast resistant rice variety through marker assisted selection.  相似文献   

7.
Traditional quantitative trait loci (QTL) mapping approaches are typically based on early or advanced generation analysis of bi-parental populations. A limitation associated with this methodology is the fact that mapping populations rarely give rise to new cultivars. Additionally, markers linked to the QTL of interest are often not immediately available for use in breeding and they may not be useful within diverse genetic backgrounds. Use of breeding populations for simultaneous QTL mapping, marker validation, marker assisted selection (MAS), and cultivar release has recently caught the attention of plant breeders to circumvent the weaknesses of conventional QTL mapping. The first objective of this study was to test the feasibility of using family-pedigree based QTL mapping techniques generally used with humans and animals within plant breeding populations (PBPs). The second objective was to evaluate two methods (linkage and association) to detect marker-QTL associations. The techniques described in this study were applied to map the well characterized QTL, Fhb1 for Fusarium head blight resistance in wheat (Triticum aestivum L.). The experimental populations consisted of 82 families and 793 individuals. The QTL was mapped using both linkage (variance component and pedigree-wide regression) and association (using quantitative transmission disequilibrium test, QTDT) approaches developed for extended family-pedigrees. Each approach successfully identified the known QTL location with a high probability value. Markers linked to the QTL explained 40–50% of the phenotypic variation. These results show the usefulness of a human genetics approach to detect QTL in PBPs and subsequent use in MAS.  相似文献   

8.
不同QTL增效基因初始频率下标记辅助选择的效果   总被引:1,自引:0,他引:1  
采用随机模拟方法模拟了在一个闭锁群体内连续对单个性状选择10个世代的情形。在假定选择性状受一个位于常染色体上的QTL和多基因共同控制的情况下,采用动物模型标记辅助最佳线性无偏预测方法估计个体育种值并据此进行种畜的选留,并在此基础上系统地比较了QTL增效基因初始频率对标记辅助选择效果的影响。结果表明:当群体中QTL增效基因的初始频率较低时,选择所获得的QTL基因型值的进展会更大,标记辅助选择在单位时间内可获得较大的遗传进展;此时,尽管QTL增效基因在群体中固定所需的世代数会更长一些,但其频率上升的速度却更快。而QTL增效基因初始频率的高低对群体近交增量的影响不是很大。  相似文献   

9.
Sitka spruce (Picea sitchensis (Bong.) Carr) is the most common commercial plantation species in Britain and a breeding programme based on traditional lines has been in operation since the early 1960s. Rotation lengths of 40-years have led breeders to adopt a process of indirect selection at younger ages based on traits well correlated with final selection, but still the generation interval is unlikely to reduce much below twenty years. Recent successful developments with genomic selection in animal breeding have led tree breeders to consider the application of this technology. In this study a RAD sequence assay was developed as a means of investigating the potential of molecular breeding in a non-model species. DNA was extracted from nearly 500 clonally replicated trees growing in a single full-sibling family at one site in Britain. The technique proved successful in identifying 132 QTLs for 5-year bud-burst and 2 QTLs for 6-year height. In addition, the accuracy of predicting phenotypes by genomic selection was strikingly high at 0.62 and 0.59 respectively. Sensitivity analysis with 200 offspring found only a slight fall in correlation values (0.54 and 0.38) although when the training population reduced to 50 offspring predictive values fell further (0.33 and 0.25). This proved an encouraging first investigation into the potential use of genomic selection in the breeding of Sitka spruce. The authors investigate how problems associated with effective population size and linkage disequilibrium can be avoided and suggest a practical way of incorporating genomic selection into a dynamic breeding programme.  相似文献   

10.
Computer simulations were used to study the efficiency of MAS for breeding self-fertilizing crops, based on a general model including additive, dominance and epistasis. It was shown that MAS not only gave larger genetic responses but also dramatically increased the frequencies of superior genotypes as compared with phenotypic selection. However, the advantages of MAS over phenotypic selection were considerably reduced when conducting selection in later generations. A modified method combining MAS in early generations with phenotypic selection in later generations was thus proposed from an efficiency standpoint. We also proposed a potential index to measure the probability of an individual showing superior genotypes under selfing. It was apparent that more superior genotypes could be derived from selection by using the potential index than by using other methods. The implications of these findings for plant breeding are discussed.Communicated by H.C. Becker  相似文献   

11.
The role of RAPD markers in breeding for disease resistance in common bean   总被引:1,自引:0,他引:1  
Diseases are regarded as the leading constraint to increased common bean (Phaseolus vulgaris L.) production worldwide. The range in variability and complexity among bean pathogens can be controlled with different single gene and quantitative resistance sources. Combining these resistance sources into commercial cultivars is a major challenge for bean breeders. To assist breeders, a major effort to identify RAPD markers tightly linked to different genes was undertaken. To date, 23 RAPD and five SCAR markers linked to 15 different resistance genes have been identified, in addition to QTL conditioning resistance to seven major pathogens of common bean. We review the feasibility of using marker-assisted selection (MAS) to incorporate disease resistance into common bean. Indirect selection of single resistance genes in the absence of the pathogen and the opportunity afforded breeders to pyramid these genes to improve their longevity and retain valuable hypostatic genes is discussed. The role of markers linked to the QTL controlling complex resistance and the potential to combine resistance sources using marker based selection is reviewed. Improving levels of selection efficiency using flanking markers, repulsion-phase linkages, co-dominant marker pairs, recombination-facilitated MAS and SCAR markers is demonstrated. Marker-assisted selection for disease resistance in common bean provides opportunities to breeders that were not feasible with traditional breeding methods.  相似文献   

12.
Computer simulations can be employed to find optimal procedures for developing introgression libraries in rye with marker-assisted backcrossing. Our objectives were to investigate the effects of the employed (1) breeding scheme, (2) selection strategy, and (3) population sizes on the donor genome coverage of the library, the number of introgression lines carrying additional donor chromosome segments outside the target regions, and the number of required marker data points. With respect to these target criteria, a BC3S2 breeding scheme and increasing population sizes from early to advanced generations were superior to a BC2S3 breeding scheme and constant population sizes. The smallest number of donor segments outside the target regions was reached with a three-stage selection strategy, which consists on selection for the target segment, selection for recombination at flanking markers and selection for recurrent parent alleles across the entire genome. Omitting the selection for flanking markers in generation BC1 reduced considerably the number of required marker data points. A pre-selection of chromosomes consisting completely of donor genome in BC1 was advantageous, if the effort in the breeding nursery should kept minimum. Adopting the described designs can help rye breeders to successfully develop introgression libraries.  相似文献   

13.
Marker-assisted selection in autogamous RIL populations: a simulation study   总被引:6,自引:0,他引:6  
 Molecular markers may enable plant breeders to select indirectly for genes affecting quantitative traits by selecting for molecular markers closely linked to these genes (marker-assisted selection, MAS). We have assessed the effectiveness of MAS compared to phenotypic selection. Key variables in this assessment were: trait heritability, selection intensity, genetic architecture and uncertainty in QTL mapping. Simulation studies showed that the application of MAS in autogamous crops, with the objective of obtaining transgressive genotypes, can improve selection results when compared to conventional selection procedures. Marker-assisted selection appears particularly promising when dominant alleles at quantitative trait loci are present and linked in coupling phase. Uncertainty in estimated QTL map positions reduces the benefits of marker-assisted selection, but this reduction remains limited in most cases. Received: 5 September 1997 / Accepted: 6 October 1997  相似文献   

14.
DNA markers have enormous potential to improve the efficiency and precision of conventional plant breeding via marker-assisted selection (MAS). The large number of quantitative trait loci (QTLs) mapping studies for diverse crops species have provided an abundance of DNA marker-trait associations. In this review, we present an overview of the advantages of MAS and its most widely used applications in plant breeding, providing examples from cereal crops. We also consider reasons why MAS has had only a small impact on plant breeding so far and suggest ways in which the potential of MAS can be realized. Finally, we discuss reasons why the greater adoption of MAS in the future is inevitable, although the extent of its use will depend on available resources, especially for orphan crops, and may be delayed in less-developed countries. Achieving a substantial impact on crop improvement by MAS represents the great challenge for agricultural scientists in the next few decades.  相似文献   

15.
Few public sector rice breeders have the capacity to use NGS-derived markers in their breeding programmes despite rapidly expanding repositories of rice genome sequence data. They rely on >?18,000 mapped microsatellites (SSRs) for marker-assisted selection (MAS) using gel analysis. Lack of knowledge about target SNP and InDel variant loci has hampered the uptake by many breeders of Kompetitive allele-specific PCR (KASP), a proprietary technology of LGC genomics that can distinguish alleles at variant loci. KASP is a cost-effective single-step genotyping technology, cheaper than SSRs and more flexible than genotyping by sequencing (GBS) or array-based genotyping when used in selection programmes. Before this study, there were 2015 rice KASP marker loci in the public domain, mainly identified by array-based screening, leaving large proportions of the rice genome with no KASP coverage. Here we have addressed the urgent need for a wide choice of appropriate rice KASP assays and demonstrated that NGS can detect many more KASP to give full genome coverage. Through re-sequencing of nine indica rice breeding lines or released varieties, this study has identified 2.5 million variant sites. Stringent filtering of variants generated 1.3 million potential KASP assay designs, including 92,500 potential functional markers. This strategy delivers a 650-fold increase in potential selectable KASP markers at a density of 3.1 per 1 kb in the indica crosses analysed and 377,178 polymorphic KASP design sites on average per cross. This knowledge is available to breeders and has been utilised to improve the efficiency of public sector breeding in Nepal, enabling identification of polymorphic KASP at any region or quantitative trait loci in relevant crosses. Validation of 39 new KASP was carried out by genotyping progeny from a range of crosses to show that they detected segregating alleles. The new KASP have replaced SSRs to aid trait selection during marker-assisted backcrossing in these crosses, where target traits include rice blast and BLB resistance loci. Furthermore, we provide the software for plant breeders to generate KASP designs from their own datasets.  相似文献   

16.
To broaden the gene pool of domesticated commercial cultivars of narrow-leafed lupin (Lupinus angustifolius L.), wild accessions are used as parents in crossing in lupin breeding. Among the progenies from wild × domesticated (W × D) crosses, the soft-seediness gene mollis is the most difficult domestication gene to be selected by conventional breeding methods, where molecular marker-assisted selection (MAS) is highly desirable. MAS in plant breeding requires markers to be cost-effective and high-throughput, and be applicable to a wide range of crosses in a breeding program. In this study, representative plants from an F8 recombinant inbred line (RIL) population derived from a W × D cross, together with four cultivars and four wild types, were used in DNA fingerprinting by microsatellite-anchored fragment length polymorphisms (MFLP). Two co-dominant MFLP polymorphisms were identified as candidate markers linked to the mollis gene, and one of the candidate markers was selected and converted into a co-dominant, sequence-specific PCR marker. This marker, designated MoLi, showed a perfect match with phenotypes of seed coat permeability on a segregating population consisting of 115 F8 RILs, confirming the close genetic linkage to the mollis gene. Validation tests showed that the banding pattern of marker MoLi is consistent with all the 25 historical and current commercial cultivars released in Australia, and is consistent with mollis genotypes in 119 of the 125 accessions in the Australian L. angustifolius core collection. Marker MoLi provides a cost-effective way to select the mollis gene in a wide range of W × D crosses in lupin breeding.  相似文献   

17.
Powdery mildew is a common disease of field pea, Pisum sativum L., and is caused by the ascomycete fungus Erysiphe pisi. It can cause severe damage in areas where pea is cultivated. Today breeders want to develop new pea lines that are resistant to the disease. To make the breeding process more efficient, it is desirable to find genetic markers for use in a marker-assisted selection (MAS) strategy. In this study, microsatellites (SSR) were used to find markers linked to powdery mildew resistance. The resistant pea cultivar '955180' and the susceptible pea cultivar 'Majoret' were crossed and F2 plants were screened with SSR markers, using bulked segregant analysis. A total of 315 SSR markers were screened out of which five showed linkage to the powdery mildew resistance gene. No single marker was considered optimal for inclusion in a MAS program. Instead, two of the markers can be used in combination, which would result in only 1.6% incorrectly identified plants. Thus SSR markers can be successfully used in marker-assisted selection for powdery mildew resistance breeding in pea.  相似文献   

18.
Markers are of interest to plant breeders as a source of genetic information on crops and for use in indirect selection of traits to which the markers are linked. In the classic breeding approach, the markers were invariably the visible morphological and other phenotypic characters, and the breeders expended considerable effort and time in refining the crosses as the tight linkage or association of the desired characters with the obvious phenotypic characters was never unequivocally established. Furthermore, indirect selection for a trait using such morphological markers was not practical due to (1) a paucity of suitable markers, (2) the undesirable pleiotropic effects of many morphological markers on plant phenotype, and (3) the inability to score multiple morphological mutant traits in a single segregating population. With the advancement in molecular biology, the use of molecular markers in plant breeding has become very commonplace and has given rise to “molecular breeding”. Molecular breeding involves primarily “gene tagging”, followed by “marker-assisted selection” of desired genes or genomes. Gene tagging refers to the identification of existing DNA or the introduction of new DNA that can function as a tag or label for the gene of interest. In order for the DNA sequences to be conserved as a tag, important prerequisites exist. This review also summarizes the achievements in gene tagging that have been made over the last 7 to 8 years.  相似文献   

19.
Genetic and plastic responses of a northern mammal to climate change   总被引:11,自引:0,他引:11  
Climate change is predicted to be most severe in northern regions and there has been much interest in to what extent organisms can cope with these changes through phenotypic plasticity or microevolutionary processes. A red squirrel population in the southwest Yukon, Canada, faced with increasing spring temperatures and food supply has advanced the timing of breeding by 18 days over the last 10 years (6 days per generation). Longitudinal analysis of females breeding in multiple years suggests that much of this change in parturition date can be explained by a plastic response to increased food abundance (3.7 days per generation). Significant changes in breeding values (0.8 days per generation), were in concordance with predictions from the breeder's equation (0.6 days per generation), and indicated that an evolutionary response to strong selection favouring earlier breeders also contributed to the observed advancement of this heritable trait. The timing of breeding in this population of squirrels, therefore, has advanced as a result of both phenotypic changes within generations, and genetic changes among generations in response to a rapidly changing environment.  相似文献   

20.
Ortiz R  M Golmirzaie A 《Hereditas》2003,139(3):212-216
The original variation in the source population as well as the selection method may influence the genetic variation in further cycles of genetic improvement. Therefore, the objectives of this research were to determine genetic parameters (variance components and heritability) in source and intermediate stages of a true potato seed (TPS) breeding population and to calculate the genetic and phenotypic correlations in this breeding material developed by the Centro Internacional de la Papa (CIP). The intermediate stage was derived from a source population adapted to the warm lowland tropics plus introduction of exotic germplasm from North America and Europe. Non-additive genetic variation was almost nil for plant survival, tuber yield and tuber shape uniformity in both stages of the breeding population and no quantitative genetic variation for uniformity of tuber color was observed in both source and intermediate breeding materials. Heritability was higher in the intermediate stage than in the source population for plant survival (0.86 vs 0.66), tuber yield (0.30 vs 0.14) and tuber shape (0.77 vs 0.51), but it was the reverse for tuber uniformity (0.11 vs 0.72). These results suggest that potato breeders at CIP were able to keep enough genetic variation for most important characteristics for potato production from true seed in their intermediate breeding materials by adding new sources of variation to the original breeding population. Additive genetic and phenotypic correlations were significant and positive between plant vigor after transplanting and tuber yield, and tuber shape and tuber uniformity, which suggest that high yielding offspring result from early vigorous growth, and that tuber uniformity could depend on tuber shape uniformity in this breeding material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号