首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate.

Methodology/Principal Findings

We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised.

Conclusions/Significance

Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallise, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.  相似文献   

2.
The molecular dynamics simulations in this work were aimed to provide a molecular insight into chain structure effects on non-isothermal crystallisation of polyethylene (PE) chains. The crystallisation behaviours were influenced by chain length and cooling rate in linear PE chain crystallisation: C100 and C150 were unable to fold into crystals. From C1000 to C3000, crystallisation abilities became stronger as chain length increased. From C5000 to C14000, chain length had no influence on crystallisation abilities. Final morphologies changed from rotator phase to single crystal domain, and to multi crystal domains as chain length increased. The formation of multi crystal domains with longer chain was easier than with the shorter chain in identical conditions. Branch content influenced not only the crystallisation kinetics but also final morphologies in non-isothermal crystallisation. The branches were defective in nucleation process, which was reflected in the crystal growth process. Crystallisation temperature, rate and crystallinity decreased, and the morphologies became disordered as branch content increased. Changes of final morphologies from single crystal domain to multi crystal domains were found under the influence of branch content and cooling rate. Trans-rich phenomenon was observed, and the trans-state population increment was prior to crystallinity increment. Crystallisation processes began at different crystallisation temperature when the trans-state populations reached a critical value which was independent of branch content.  相似文献   

3.
We demonstrate the feasibility of growing crystals of protein in volumes as small as 1 nanoliter. Advances in the handling of very small volumes (i.e. through inkjet and other technologies) open the way towards fully automated systems. The rationale for these experiments is the desire to develop a system that speeds up the structure determination of proteins by crystallographic techniques, where most of the precious protein sample is wasted for the identification of the ideal crystallisation conditions. An additional potential benefit of crystallisation in very small volumes is the potential improvement of the crystal quality through reduced convection during crystal growth. Furthermore, in such small volumes even very highly supersaturated conditions can be stable for prolonged periods, allowing additional regions of phase-space to be prospected for elusive crystallisation conditions. A massive improvement in the efficiency of protein crystallogenesis will cause a paradigm shift in the biomolecular sciences and will have a major impact in product development in (for example) the pharmaceutical industry.  相似文献   

4.
In structure-based drug design, accurate crystal structure determination of protein-ligand complexes is of utmost importance in order to elucidate the binding characteristics of a putative lead to a given target. It is the starting point for further design hypotheses to predict novel leads with improved properties. Often, crystal structure determination is regarded as ultimate proof for ligand binding providing detailed insight into the specific binding mode of the ligand to the protein. This widely accepted practise relies on the assumption that the crystal structure of a given protein-ligand complex is unique and independent of the protocol applied to produce the crystals. We present two examples indicating that this assumption is not generally given, even though the composition of the mother liquid for crystallisation was kept unchanged: Multiple crystal structure determinations of aldose reductase complexes obtained under varying crystallisation protocols concerning soaking and crystallisation exposure times were performed resulting in a total of 17 complete data sets and ten refined crystal structures, eight in complex with zopolrestat and two complexed with tolrestat. In the first example, a flip of a peptide bond is observed, obviously depending on the crystallisation protocol with respect to soaking and co-crystallisation conditions. This peptide flip is accompanied by a rupture of an H-bond formed to the bound ligand zopolrestat. The indicated enhanced local mobility of the complex is in agreement with the results of molecular dynamics simulations. As a second example, the aldose reductase-tolrestat complex is studied. Unexpectedly, two structures could be obtained: one with one, and a second with four inhibitor molecules bound to the protein. They are located in and near the binding pocket facilitated by crystal packing effects. Accommodation of the four ligand molecules is accompanied by pronounced shifts concerning two helices interacting with the additional ligands.  相似文献   

5.
Cross-linked enzyme crystals (CLECs®) are a novel form of immobilised biocatalyst designed for application in large-scale biotransformation processes. In this work we review the production and characterisation of CLECs® prepared from three enzymes (yeast alcohol dehydrogenase I (YADHI), Candida rugosa lipase and α-chymotrypsin) over a range of crystallisation and cross-linking conditions. Optimisation and control of the crystallisation process, with respect to crystal form and enzyme activity yield, was facilitated by the use of triangular crystallisation diagrams which allowed three parameters (e.g. protein concentration, precipitant concentration and pH) to be varied simultaneously. These diagrams showed regions, or 'crystallisation windows', in which particular crystal forms or optimal activity recoveries (up to 87%) could be obtained. They also identified conditions for reproducible scale-up of the lipase crystallisation from 0.5 to 500 mL scale.

In order to evaluate the suitability of a particular batch of CLECs® for large-scale use, a hierarchy of standard tests is proposed. This is designed to expose key properties of the CLECs® relative to each other, and the free enzyme, and to minimise the number of experiments necessary to evaluate each batch of biocatalyst. In general, the CLECs® of each enzyme were found to be more resistant to harsh environmental conditions, such as extremes of temperature and pH and the presence of solvents or proteases, than the free enzymes. Cross-linking of the crystals with glutaraldehyde also yielded mechanically robust catalysts that could withstand the various forces associated with shear in agitated vessels and particle compression in repeated dead-end filtration cycles. The hierarchy of tests proposed here clearly indicated that many of the above properties were also dependent on both the crystal form and size, and the concentration of cross-linking reagent used. Accurate control of the crystallisation conditions used for CLEC® production is therefore vital as this will influence the suitability of the CLECs® for their end use.  相似文献   

6.
Amorphous whey, whey-permeate and lactose powders have been crystallised at various air temperatures and humidities, and these crystallised powders have been examined using X-ray diffraction. The most stable lactose crystal under normal storage conditions, alpha-lactose monohydrate, forms preferentially in whey and whey-permeate powders at 50 degrees C, provided sufficient moisture is available, whereas anhydrous beta-lactose and mixed anhydrous lactose crystals, which are unstable under normal storage conditions, form preferentially at 90 degrees C. Thus, faster crystallisation at higher temperatures is offset by the formation of lactose-crystal forms that are less stable under normal storage conditions. Very little alpha-lactose monohydrate crystallised in the pure lactose powders over the range of temperatures and humidities tested, because the crystallisation of alpha- and beta-lactose is considerably more rapid than the mutarotation of beta- to alpha-lactose in the amorphous phase and the hydration of alpha-lactose during crystallisation. Protein and salts hinder the crystallisation process, which provides more time for mutarotation and crystal hydration in the whey and whey-permeate powders.  相似文献   

7.
Polarised light microscopy was employed non-invasively to monitor lactose crystallisation from non-seeded supersaturated solutions in real time. Images were continuously recorded, processed and characterised by image analysis, and the results were compared with those obtained by refractometry. Three crystallisation temperatures (10, 20 and 30 degrees C) and three different levels of initial relative supersaturation (C/C(s)=1.95; 2.34; 3.15) were investigated. Induction times using the imaging technique proved to be substantially lower than those determined using refractive index. Lactose crystals were isolated digitally to determine geometrical parameters of interest, such as perimeter, diameter, area, roundness and Feret mean, and to derive crystal growth rates. Mean growth rates obtained for single crystals were fitted to a combined mass transfer model (R(2)=0.9766). The model allowed the effects of temperature and supersaturation on crystallisation rate to be clearly identified. It also suggested that, in this set of experiments, surface integration seemed to be the rate controlling step. It is believed that a similar experimental set-up could be implemented in a real food system to characterise a particular process where crystallisation control is of interest and where traditional techniques are difficult to implement.  相似文献   

8.
We took 28 fragments of DNA whose crystal structures were known and used CD spectroscopy to search for conditions stabilising the crystal structures in solution. All 28 fragments switched into their crystal structures in 60-80% aqueous trifluorethanol (TFE) to indicate that the crystals affected the conformation of DNA like the concentrated TFE. The fragments crystallising in the B-form also underwent cooperative TFE-induced changes that took place within the wide family of B-form structures, suggesting that the aqueous and crystal B-forms differed as well. Spermine and magnesium or calcium cations, which were contained in the crystallisation buffers, promoted or suppressed the TFE-induced changes of several fragments to indicate that the crystallisation agents can decide which of the possible structures is adopted by the DNA fragment in the crystal.  相似文献   

9.
The crystallographic quality of protein crystals that were grown in microgravity has been compared to that of crystals that were grown in parallel on earth gravity under otherwise identical conditions. A goal of this comparison was to assess if a more accurate 3D-structure can be derived from crystallographic analysis of the former crystals. Therefore, the properties of crystals prepared with the Advanced Protein Crystallisation Facility (APCF) on earth and in orbit during the last decade were evaluated. A statistical analysis reveals that about half of the crystals produced under microgravity had a superior X-ray diffraction limit with respect of terrestrial controls. Eleven protein structures could be determined at previously unachieved resolutions using crystals obtained in the APCF. Microgravity induced features of the most relevant structures are reported. A second goal of this study was to identify the cause of the crystal quality enhancement useful for structure determination. No correlations between the effect of microgravity and other system-dependent parameters, such as isoelectric point or crystal solvent content, were found except the reduced convection during the crystallisation process. Thus, crystal growth under diffusive regime appears to be the key parameter explaining the beneficial effect of microgravity on crystal quality. The mimicry of these effects on earth in gels or in capillary tubes is discussed and the practical consequences for structural biology highlighted.  相似文献   

10.
Plomp M  McPherson A  Malkin AJ 《Proteins》2003,50(3):486-495
The surface morphology of Bence-Jones protein (BJP) crystals was investigated during growth and dissolution by using in situ atomic force microscopy (AFM). It was shown that over a wide supersaturation range, impurities adsorb on the crystalline surface and ultimately form an impurity adsorption layer that prevents further growth of the crystal. At low undersaturations, this impurity adsorption layer prevents dissolution. At greater undersaturation, dissolution takes place around large particles incorporated into the crystal, leading to etch pits with impurity-free bottoms. On restoration of supersaturation conditions, two-dimensional nucleation takes place on the impurity-free bottoms of these etch pits. After new growth layers fill in the etch pits, they cover the impurity-poisoned top layer of the crystal face. This leads to the resumption of its growth. Formation of an impurity-adsorption layer can explain the termination of growth of macromolecular crystals that has been widely noted. Growth-dissolution-growth cycles could be used to produce larger crystals that otherwise would have stopped growing because of impurity poisoning.  相似文献   

11.
RNA is known to perform diverse roles in the cell, often as ribonucleoprotein (RNP) particles. While the crystal structure of these RNP particles could provide crucial insights into their functions, crystallographic work on RNP complexes is often hampered by difficulties in obtaining well-diffracting crystals. The small nuclear ribonucleoprotein (snRNP) core domain, acting as an assembly nucleus for the maturation of snRNPs, plays a crucial role in the biogenesis of four of the spliceosomal snRNPs. We have succeeded in crystallising the human U4 snRNP core domain containing seven Sm proteins and a truncated U4 snRNA variant. The most critical factor in our success in the crystallisation was the introduction of various tertiary interaction modules into the RNA that could promote crystal packing without altering the core structure. Here, we describe various strategies employed in our crystallisation effort that could be applied to crystallisation of other RNP particles.  相似文献   

12.
Well-ordered crystals of the bacterial photosynthetic reaction centre from Rhodobacter sphaeroides were grown from a lipidic cubic phase. Here, we report the type I crystal packing that results from this crystallisation medium, for which 3D crystals grow as stacked 2D crystals, and the reaction centre X-ray structure is refined to 2.35A resolution. In this crystal form, the location of the membrane bilayer could be assigned with confidence. A cardiolipin-binding site is found at the protein-protein interface within the membrane-spanning region, shedding light on the formation of crystal contacts within the membrane. A chloride-binding site was identified in the membrane-spanning region, which suggests a putative site for interaction with the light-harvesting complex I, the cytochrome bc(1) complex or PufX. Comparisons with the X-ray structures of this reaction centre deriving from detergent-based crystals are drawn, indicating that a slight compression occurs in this lipid-rich environment.  相似文献   

13.
The conformation of porcine-brain calmodulin in solution has been examined by far-UV circular dichroism in the presence of 2-methyl 2,4-pentanediol, and polyethylene glycol which are used to promote the crystallisation of calmodulin. These organic compounds increase the alpha-helical content of Ca4-calmodulin to a significant degree and to a level similar to the alpha-helical content deduced from the crystal structure. These results support the view that in aqueous solution at pH 5-7, the conformation of Ca4-calmodulin is significantly different from the crystal structure and probably lacks at least a portion of the central helix. In the process of crystallisation, Ca4-calmodulin apparently adopts additional alpha-helical structure, probably due to the composition of the solution from which crystals are grown.  相似文献   

14.
Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.  相似文献   

15.
Crystals of a human (Sea) Bence-Jones dimer were produced in a capillary by vapor diffusion under microgravity conditions in the 9 day US Space Shuttle Mission STS-95. In comparison to ground-based experiments, nucleation was facile and spontaneous in space. Appearance of a very large (8 x 1.6 x 1.0 mm) crystal in a short time period is a strong endorsement for the use of microgravity to produce crystals sufficiently large for neutron diffraction studies. The Sea dimer crystallized in the orthorhombic space group P2(1)2(1)2(1), with a = 48.9 A, b = 85.2 A, and c = 114.0 A. The crystals grown in microgravity exhibited significantly lower mosaicities than those of ground-based crystals and the X-ray diffraction data had a lower overall B factor. Three-dimensional structures determined by X-ray analysis at two temperatures (100 and 293 K) were indistinguishable from those obtained from ground-based crystals. However, both the crystallographic R factor and the free R factor were slightly lower in the models derived from crystals produced in microgravity. The major difference between the two crystal growth systems is a lack of convection and sedimentation in a microgravity environment. This environment resulted in the growth of much larger, higher-quality crystals of the Sea Bence-Jones protein. Structurally, heretofore unrecognized grooves on the external surfaces of the Sea and other immunoglobulin-derived fragments are regular features and may offer supplementary binding regions for super antigens and other elongated ligands in the bloodstream and perivascular tissues.  相似文献   

16.
By using Bio-Beads as a detergent-removing agent, it has been possible to produce detergent-depleted two-dimensional crystals of purified Ca-ATPase. The crystallinity and morphology of these different crystals were analyzed by electron microscopy under different experimental conditions. A lipid-to-protein ratio below 0.4 w/w was required for crystal formation. The rate of detergent removal critically affected crystal morphology, and large multilamellar crystalline sheets or wide unilamellar tubes were generated upon slow or fast detergent removal, respectively. Electron crystallographic analysis indicated unit cell parameters of a = 159 A, b = 54 A, and gamma = 90 degrees for both types of crystals, and projection maps at 15-A resolution were consistent with Ca-ATPase molecules alternately facing the two sides of the membrane. Crystal formation was also affected by the protein conformation. Indeed, tubular and multilamellar crystals both required the presence of Ca2+; the presence of ADP gave rise to another type of packing within the unit cell (a = 86 A, b = 77 A, and gamma = 90 degrees), while maintaining a bipolar orientation of the molecules within the bilayer. All of the results are discussed in terms of nucleation and crystal growth, and a model of crystallogenesis is proposed that may be generally true for asymmetrical proteins with a large hydrophilic cytoplasmic domain.  相似文献   

17.
本文对等温自由生长和强制性溶液生长的等电溶菌酶的晶体形态进行了研究,发现这些形态变化与溶液相的流动密切相关,指出生物晶体生长停止是由于生长晶体周围的溶质贫乏造成的;通过某些手段减薄或消除这一溶质贫乏区,就可以保证晶体的持续生长。本文的研究对改善大尺寸晶体的生长提供了一条途径。  相似文献   

18.
An apparatus is described for observing protein crystals growing under varying growth conditions, and for changing or manipulating crystal orientation for viewing selected faces or growth modes. This flexibility permits a wide variety of protein crystal growth experiments to be performed using the same crystal(s).  相似文献   

19.
Large two-dimensional crystals of H+-ATPase, a 100 kDa integral membrane protein, were grown directly onto the carbon surface of an electron microscope grid. This procedure prevented the fragmentation that is normally observed upon transfer of the crystals from the air-water interface to a continuous carbon support film. Crystals grown by this method measure approximately 5 microm across and have a thickness of approximately 240 A. They are of better quality than the monolayers previously obtained at the air-water interface, yielding structure factors to at least 8 A in-plane resolution by electron image processing. Unlike most other two-dimensional crystals of membrane proteins they do not contain a lipid bilayer, but consist of detergent-protein micelles of H+-ATPase hexamers tightly packed on a trigonal lattice. The crystals belong to the two-sided plane group p321 (a=b=165 A), containing two layers of hexamers related by an in-plane axis of 2-fold symmetry. The protein is in contact with the carbon surface through its large, hydrophilic 70 kDa cytoplasmic portion, yet due to the presence of detergent in the crystallizing buffer, the hydrophobicity of the carbon surface does not appear to affect crystal formation. Surface crystallisation may be a useful method for other proteins which form fragile two-dimensional crystals, in particular if conditions for obtaining three-dimensional crystals are known, but their quality or stability is insufficient for X-ray structure determination.  相似文献   

20.
Protein crystallisation has gained a new strategic and commercial relevance in the post-genomic era because of its pivotal role in structural genomics. Producing high-quality crystals has always been a bottleneck to structure determination and, with the advent of proteomics, this problem is becoming increasingly acute. The task of producing suitable crystals may be tackled using two approaches. The first relies on empirical techniques that are based mainly on trial and error, and what is perceived to be the 'art' of crystallisation. The second approach is aimed at gaining an understanding of the fundamental principles that govern crystallisation; this knowledge may be applied to design experimental methodology for producing high-quality crystals of medical and industrial interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号