首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytoplasmic domain of the medicinal mushroom Cordyceps militaris β-1,3-glucan synthase catalytic subunit Fks1 was expressed as a fusion protein with an N-terminal hexahistidine tag and glutathione S-transferase in an Escherichia coli cell-free translation system, and was assayed for binding specificity. The recombinant cytoplasmic domain bound specifically to UDP-agarose and lichenan (β-glucan), but not to ADP-agarose, GDP-agarose, or other carbohydrates.  相似文献   

2.
By selective enzymolysis, or chemical fractionation, a minor polysaccharide component has been isolated from yeast (Saccharomyces cerevisiae) glucan. This minor component has a degree of polymerization of about 130-140, a highly branched structure, and a high proportion of beta-(1-->6)-glucosidic linkages. The molecules also contain a smaller proportion of beta-(1-->3)-glucosidic linkages that serve mainly as interchain linkages, but some may also be inter-residue linkages.  相似文献   

3.
The structure of a β-(1→3)-d-glucan from yeast cell walls   总被引:1,自引:1,他引:1       下载免费PDF全文
Yeast glucan as normally prepared by various treatments of yeast (Saccharomyces cerevisiae) cell walls to remove mannan and glycogen is still heterogeneous. The major component (about 85%) is a branched beta-(1-->3)-glucan of high molecular weight (about 240000) containing 3% of beta-(1-->6)-glucosidic interchain linkages. The minor component is a branched beta-(1-->6)-glucan. A comparison of our results with those of other workers suggests that different glucan preparations may differ in the degree of heterogeneity and that the major beta-(1-->3)-glucan component may vary considerably in degree of branching.  相似文献   

4.
Laminarinases hydrolyzing the β-1,3-linkage of glucans play essential roles in microbial saccharide degradation. Here we report the crystal structures at 1.65-1.82 ? resolution of the catalytic domain of laminarinase from the thermophile Thermotoga maritima with various space groups in the ligand-free form or in the presence of inhibitors gluconolactone and cetyltrimethylammonium. Ligands were bound at the cleft of the active site near an enclosure formed by Trp-232 and a flexible GASIG loop. A closed configuration at the active site cleft was observed in some molecules. The loop flexibility in the enzyme may contribute to the regulation of endo- or exo-activity of the enzyme and a preference to release laminaritrioses in long chain carbohydrate hydrolysis. Glu-137 and Glu-132 are proposed to serve as the proton donor and nucleophile, respectively, in the retaining catalysis of hydrolyzation. Calcium ions in the crystallization media are found to accelerate crystal growth. Comparison of laminarinase and endoglucanase structures revealed the subtle difference of key residues in the active site for the selection of β-1,3-glucan and β-1,4-glucan substrates, respectively. Arg-85 may be pivotal to β-1,3-glucan substrate selection. The similarity of the structures between the laminarinase catalytic domain and its carbohydrate-binding modules may have evolutionary relevance because of the similarities in their folds.  相似文献   

5.
The entomopathogenic fungus Cordyceps militaris belongs to vegetable wasps and plant worms and is used as herbal medicine, but β-1,3-glucan biosynthesis has been poorly studied in C. militaris. The fungal FKS1 gene encodes an integral membrane protein that is the catalytic subunit of β-1,3-glucan synthase. Here, we isolated cDNA clones encoding a full-length open reading frame of C. militaris FKS1. Cordyceps militaris Fks1 protein is a 1981 amino acid protein that shows significant similarity with other fungal Fks proteins. This study is the first report of molecular cloning of the β-1,3-glucan synthase catalytic subunit gene from vegetable wasps and plant worms.  相似文献   

6.
A thermophilic glycoside hydrolase family 16 (GH16) β-1,3-1,4-glucanase from Clostridium thermocellum (CtLic16A) holds great potentials in industrial applications due to its high specific activity and outstanding thermostability. In order to understand its molecular machinery, the crystal structure of CtLic16A was determined to 1.95 Å resolution. The enzyme folds into a classic GH16 β-jellyroll architecture which consists of two β-sheets atop each other, with the substrate-binding cleft lying on the concave side of the inner β-sheet. Two Bis–Tris propane molecules were found in the positive and negative substrate binding sites. Structural analysis suggests that the major differences between the CtLic16A and other GH16 β-1,3-1,4-glucanase structures occur at the protein exterior. Furthermore, the high catalytic efficacy and thermal profile of the CtLic16A are preserved in the enzyme produced in Pichia pastoris, encouraging its further commercial applications.  相似文献   

7.
1. A beta-(1-->4)-glucan hydrolase prepared from Aspergillus niger, as described by Clarke & Stone (1965a), showed a pH optimum in the range 4.5-6 and K(m) 0.25% when acting on a cellulose dextrin sulphate substrate. 2. The hydrolase rapidly decreased the specific viscosity of carboxymethylcellulose with a small increase in the production of reducing sugars. The identity of the products of hydrolysis of cellotetraose, cellopentaose and their reduced analogues indicate a preferential cleavage of non-terminal glucosidic linkages. The enzyme may be described as beta-(1-->4)-glucan 4-glucanohydrolase (EC 3.2.1.4). 3. In addition to carboxymethylcellulose, cellulose dextrins, cellopentaose and cellotetraose the enzyme fraction hydrolysed lichenin, oat and barley glucans, ivory-nut mannan and a glucomannan from Konjak flour. No hydrolysis of wheat-straw beta-(1-->4)-xylan, Lupinus albus beta-(1-->4)-galactan, pneumococcal type III polysaccharide, chitin, hyaluronic acid, laminarin, pachydextrins, carboxymethylpachyman or beta-(1-->3)-oligoglucosides was detected. 4. The hydrolase showed no transglycosylase activity from cellodextrin or cellopentaose substrates to glucose or methanol acceptors. 5. The hydrolysis of cellodextrins was inhibited completely by 1.0mm-Hg(2+), 0.7mm-phenylmercuric nitrate and 1.0mm-iodine.  相似文献   

8.
Summary Examination of the relationship between the rate of oxygen transfer and the rate of polymer production revealed an unexpectedly high requirement for oxygen. At a cell density of about 3 g (dry wt)/L, the threshhold value for OTR for optimal synthesis of polymer is about 50 mmoles O2/L.hr. Whereas Rushton turbines are effecient at transfering oxygen to solution, their use reduces the quality of the recovered polymer. Although better quality polymer can be produced in a reactor employing an agitator which causes less shear stress, the productivity can be compromised due to the inefficiency in OTR. The present study describes operating conditions for the provision of sufficient OTR in a system compatible with the production of high-quality polymer whereby turbine impellers were replaced with a marine-type propeller and mass transfer was assisted by means of a gas dispersion device.  相似文献   

9.
10.
11.
We examined some characteristics of hydrolyticenzymes, especially -1,3-glucanase, to obtain theinformation of cell wall lytic enzymes forrotifers.Crude enzyme (ammonium sulfate fraction) of rotifershydrolyzed starch, -1,3-glucan, glycol chitinand CM-cellulose. Optimum pH for hydrolysis ofstarch and CM-cellulose was 6.5, and that for -1,3glucan and glycol chitin was pH 6.0. Pectic acid,xylan and agarose were not hydrolyzed at pH 3–10.-1,3 glucanase was purified about 73-fold from crudeenzyme by ion-exchange chromatography and gelfiltration. Optimum pH and temperature of the enzymewere 6 and 60 °C, respectively. The molecular weight ofthe enzyme was estimated about 260 kDa by gelfiltration. The enzyme was inhibited byHgCl2 and MnCl_2.  相似文献   

12.
Mixed membrane preparations from the coleoptiles and first leaves of young barley (Hordeum vulgare L. cv. Triumph) plants catalysed the synthesis of 55% methanol-insoluble labelled material from UDP[U-14C]glucose, the main components of which were identified as (1,3)(1,4)-- and (1,3)--D-glucans. The membrane preparations also catalysed the transformation of UDP-glucose into labelled low-molecular-weight products, mainly glucose (by phosphatase action), glucose-1-phosphate (by phosphodiesterase action) and glyco(phospho)lipids (by glycosyltransferase action). The formation of (1,3)(1,4)--glucans, (1,3)--glucans, and the other reactions competing for UDP-glucose, were monitored simultaneously and quantitatively by a novel procedure based on enzymatic analysis, thin-layer chromatography and digital autoradiography. Thus it was possible (i) to optimise conditions to obtain (1,3)(1,4)--glucan synthesis or (1,3)--glucan synthesis in isolation, and (ii) to study the influence of temperature, pH, cofactors, substrate concentration etc. on the (1,3)(1,4) and (1,3)--glucan synthesis reactions even when both occurred together. The synthesis of both -glucans was optimal at 20°C. In Tris-HCl buffer, the pH optima for (1,3)(1,4)--glucan synthesis and (1,3)--glucan synthesis were pH 8.5 and pH 7.0, respectively. Both glucan-synthesis reactions required Mg2+: (1,3)--glucan synthesis was optimal at 2 mM, whereas (1,3)(1,4)--glucan synthesis continued to increase up to 200 mM Mg2+, when the ion was supplied as the sulphate. (1,3)--Glucan synthesis was Ca2+ dependent and this dependence could be abolished by proteinase treatment. The K m with respect to UDP-glucose was 1.5 mM for (1,3)--glucan synthesis and approximately 1 mM for (1,3)(1,4)--glucan synthesis. The (1,3)(1,4)--glucan formed in vitro had the same ratio of trisaccharide to tetrasaccharide structural blocks irrespective of the experimental conditions used during the synthesis: its enzymatic fragmentation pattern was indistinguishable from that of barley endosperm (1,3)(1,4)--glucan. This indicates either a single synthase enzyme, which is responsible for the formation of both linkage types, or two enzymes which are very tightly coupled functionally.Abbreviations G4G4G3G Glc(1,4)Glc(1,4)Glc(1,3)Glc (-linked) - UDP-Glc uridine-5-diphosphate glucose We are grateful to the Commission of the European Communities for the award of Training Fellowships to Christine Vincent and Martin Becker.  相似文献   

13.
1. A barley glucan with 68% of beta-(1-->4)-linkages and 32% of beta-(1-->3)-linkages was exhaustively hydrolysed with an Aspergillus niger beta-(1-->4)-glucan 4-glucanohydrolase (EC 3.2.1.4) (Clarke & Stone, 1965b). The hydrolysis products were separated and estimated. 2. The lower-molecular-weight products were identified as: glucose, 1.4%; cellobiose, 11.9%; 3(2)-O-beta-glucosylcellobiose, 45.0%; a tetrasaccharide(s), which was a substituted cellobiose, 16.4%. A series of unidentified higher-molecular-weight products (26.5%) were also found. 3. The identity of the products suggests that the A. niger beta-(1-->4)-glucan hydrolase hydrolyses beta-glucosidic linkages joining 4-O-substituted glucose residues. 4. When an enzyme fraction containing the beta-(1-->4)-glucan hydrolase and an exo-beta-(1-->3)-glucan hydrolase was used, the same products were found, but the higher-molecular-weight products were observed to have only a transient existence in the hydrolysate and were virtually absent after prolonged incubation. It is suggested that these oligosaccharides are resistant to attack by beta-(1-->4)-glucan hydrolase but are partially hydrolysed by the exo-beta-(1-->3)-glucan hydrolase and therefore possess one or more (1-->3)-linked glucose residues at their non-reducing end.  相似文献   

14.
It has been shown that β-(1  3)-(1  4)-glucans (BG34) from barley and oats can trigger recognition and internalization by murine and human macrophages. Increasing evidence has suggested that macrophage recognition and internalization of BG34 are dramatically affected by the purity of BG34, the molecular weight and chemical modification. In this study, we investigated the structural features of BG34 for macrophage recognition and internalization. We prepared homogeneous BG34s of 10 kDa (BG34-10), 200 kDa (BG34-200) and 500 kDa (BG34-500) with high purity, and then introduced green fluorescence FITC to the reducing ends (Re) or main chain (Mc). The results of size exclusion chromatography, 13C NMR, fluorescence microscopy, FACS analyses and MTS assay demonstrated that non-toxic BG34 of 10 kDa (BG34-10) effectively trigger macrophage internalization. The internalization was adversely affected by modifying the main chain of BG34-10 but not the reducing end. Studies using blocking antibodies on several CD11b+ and CD11b? cells suggested that CD11b may play an important role in mediating macrophage internalization of BG34-10. Quantitative RT-PCR and intracellular cytokine stain revealed that macrophages generate increased level of CD11b and TNF-α in response to BG34-10. This study for the first time demonstrated the molecular size (10 kDa) and pattern of modification (reducing end modification) for BG34-10 to mediate macrophage internalization. Since BG34 is water soluble, biocompatible and biodegradable FDA-approved material, this mechanism of BG34-10 can be used to design drug delivery system targeting macrophages.  相似文献   

15.
Summary A monospecific antibody against -1,3-glucan recognition protein (a 62 kDa protein) of the larval silkworm prophenoloxidase activating system was used to study the localization of the protein. Among tissues from 5th instar larvae, only hemocytes and plasma were shown to contain a 62 kDa polypeptide immunoreactive with the antibody. Ultra-thin sections of the hemocytes were stained by an indirect immunogold staining method. Labelling occurred in the granules and cytoplasm of granulocytes and in the spherules and cytoplasm of spherulocytes. It was most conspicuous in granules of granulocytes and uniformly labelled spherules of spherulocyte, whereas no labelling was evident in prohemocytes, plasmatocytes and oenocytoids. The results are discussed in relation to the mode of recognition of fungi as non-self in insect hemocoel.  相似文献   

16.
Enzyme catalyzed phosphate transfer is a part of almost all metabolic processes. Such reactions are of central importance for the energy balance in all organisms and play important roles in cellular control at all levels. Mutases transfer a phosphoryl group while nucleases cleave the phosphodiester linkages between two nucleotides. The subject of our present study is the Lactococcus lactis β-phosphoglucomutase (β-PGM), which effectively catalyzes the interconversion of β-D-glucose-1-phosphate (β-G1P) to β-D-glucose-6-phosphate (β-G6P) and vice versa via stabile intermediate β-D-glucose-1,6-(bis)phosphate (β-G1,6diP) in the presence of Mg(2+). In this paper we revisited the reaction mechanism of the phosphoryl transfer starting from the bisphosphate β-G1,6diP in both directions (toward β-G1P and β-G6P) combining docking techniques and QM/MM theoretical method at the DFT/PBE0 level of theory. In addition we performed NEB (nudged elastic band) and free energy calculations to optimize the path and to identify the transition states and the energies involved in the catalytic cycle. Our calculations reveal that both steps proceed via dissociative pentacoordinated phosphorane, which is not a stabile intermediate but rather a transition state. In addition to the Mg(2+) ion, Ser114 and Lys145 also play important roles in stabilizing the large negative charge on the phosphate through strong coordination with the phosphate oxygens and guiding the phosphate group throughout the catalytic process. The calculated energy barrier of the reaction for the β-G1P to β-G1,6diP step is only slightly higher than for the β-G1,6diP to β-G6P step (16.10 kcal mol(-1) versus 15.10 kcal mol(-1)) and is in excellent agreement with experimental findings (14.65 kcal mol(-1)).  相似文献   

17.
Moore  A. E.  Stone  B. A. 《Planta》1972,104(2):93-109
Summary A high level of activity of a -1,3-glucan hydrolase is present in leaves of Nicotiana glutinosa and the enzyme is also present in the roots, midribs, petioles and stems. By comparison, very low levels of -1,4-glucan hydrolase are found throughout the plant. The activity of the -1,3-glucan hydrolase in leaves aged on the plant was found to increase 14-fold during the course of leaf senescence and to reach a maximum in yellow-green leaves. Detached leaves and leaf discs floated on water in the dark showed similar patterns of change.The increase in -1,3-glucan hydrolase activity during senescence is apparently not due to the loss of an inhibitor from young green leaves or to the formation of an enzyme activator in yellow leaves. The enzyme in yellow leaves was electrophoretically indistinguishable from that in green leaves. The hydrolase is not firmly attached to the cell walls and is not present in the particulate fraction sedimenting at 105400xg for 60 min. Within the leaf cell it is therefore likely to be located either in the cytoplasm or in an easily disrupted structure such as a vacuole.The relationship of the hydrolase to leaf senescence was investigated by examining the effect of plant hormones on the changes in level of hydrolase, protein and chlorophyll in leaf discs during senescence. IAA (10 M) and GA3 (50 M) did not alter the normal patterns of change, whilst Kin (50 M) delayed the loss of protein and chlorophyll and also delayed and decreased the rise in hydrolase activity. In contrast, ABA (190 M) which increased the rate of loss of protein and chlorophyll, also caused a decrease in the rate and extent of the rise in hydrolase.Possible functions of the hydrolase in the leaf are discussed.Abbreviations used throughout text CM-pachyman carboxymethyl pachyman - CM-cellulose carboxymethyl cellulose - BSA bovine serum albumin - ABA abscisic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - Kin kinetin  相似文献   

18.
Summary Cell free supernatants, containing -1,3-glucanase fromBasidiomycete QM 806, dramatically augmented the effect of papain on yeast autolysis. This enables the process time to be significantly reduced and/or the yield of extract to be substantially increased.  相似文献   

19.
Cannabinoid receptors are a family of G-protein coupled receptors that are involved in a wide variety of physiological processes and diseases. One of the key regulators that are unique to cannabinoid receptors is the cannabinoid receptor interacting proteins (CRIPs). Among them CRIP1a was found to decrease the constitutive activity of the cannabinoid type-1 receptor (CB1R). The aim of this study is to gain an understanding of the interaction between CRIP1a and CB1R through using different computational techniques. The generated model demonstrated several key putative interactions between CRIP1a and CB1R, including the critical involvement of Lys130 in CRIP1a.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号