首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of steady-state increases in abdominal pressure (Pab) on cardiac performance was studied in seven acutely instrumented swine with pneumoperitoneum (PP). The animal was placed on volume-preset ventilation, and PP was created by air insufflation. Cardiac output (CO), right atrial (Pra), left atrial (Pla), pericardial (Ppe), and abdominal inferior vena cava pressures (Pivc) were measured while Pab was increased from baseline to 7.5, 15, and 30 mmHg (PP7.5, PP15, and PP30, respectively). Cardiac function curves of the right and left ventricle (RV and LV, respectively) were compared between baseline and PP30. CO presented biphasic changes, with an inital slight increase at PP7.5 followed by a fall at PP30. A significant discrepancy was observed between Pra and Pivc at PP15 and PP30, consistent with development of a "vascular waterfall." Transmural Pla (Pla - Ppe) showed parallel changes with CO, whereas transmural Pra (Pra - Ppe) exhibited a sustained increase. The RV cardiac-function curve was more depressed than was that of the LV at PP30; this suggests an increased RV afterload produced by the elevated airway pressure. These results support the hypothesis that our previously proposed concept of abdominal vascular zone conditions (M. Takata, R. A. Wise, and J. L. Robotham. J. Appl. Physiol. 69: 1961-1972, 1990) is also applicable to steady-state hemodynamic analyses. The abdominal zones appear to play an important role in determining CO, with increases in Pab, by modulating systemic venous return and the LV preload. Simultaneous measurements of Pra and Pivc may provide useful information in the hemodynamic care of patients with elevated Pab.  相似文献   

2.
To explain the contradictory results in the literature regarding the effects of inspiratory diaphragmatic descent on inferior vena caval (IVC) venous return, we evaluated changes in total IVC flow as well as regional splanchnic and nonsplanchnic IVC flows by use of ultrasound flow probes placed around the thoracic and subhepatic abdominal IVC during phrenic nerve stimulation (PNS) in anesthetized open-chest dogs. With the abdomen closed (n = 6), PNS under hypervolemic conditions increased the total IVC flow by enhancing the splanchnic IVC flow, with a transient decrease in the nonsplanchnic IVC flow (P less than 0.05). Under hypovolemic conditions, PNS initially increased the total IVC flow but later decreased the total IVC flow by reducing the nonsplanchnic IVC flow, associated with a venous pressure gradient in the IVC across the diaphragm (P less than 0.05), consistent with development of a vascular waterfall. With the abdomen widely open, the mobile abdominal contents eviscerated, and the subhepatic IVC occluded (n = 5), PNS increased the splanchnic IVC flow associated only with an increase in focal contact pressure over the liver without any increase in general abdominal pressure (Pab) (P less than 0.05). These results suggest that our previously proposed concept of abdominal vascular zone conditions (J. Appl. Physiol. 69: 1961-1972, 1990) is useful as a global approximation to understand the effects of respiratory-induced changes in Pab's on the total and regional IVC venous return. Nonhomogeneous distribution of Pab's during diaphragmatic descent may need to be considered to explain all aspects of the behavior of the intact IVC system.  相似文献   

3.
The venous occlusion technique was used to measure capillary pressure in the forearm and foot of man over a wide range of venous pressures. In six recumbent subjects venous pressure (Pv) in the forearm (mean +/- SE) was 9.3 +/- 1.4 mmHg and the venous occlusion estimate of capillary pressure (Pc) was 17.0 +/- 1.6 mmHg, whereas in another six subjects Pv in the foot was 17.1 +/- 1.2 mmHg and Pc was 23.4 +/- 2.5 mmHg. Venous pressure in the limbs was increased either by changes in posture or by venous congestion with a sphygmomanometer cuff. On standing Pv in the foot increased to 95.2 +/- 1.5 mmHg and Pc rose to 112.8 +/- 3.1 mmHg. The relationship established between venous pressure and capillary pressure in the forearm is Pc = 1.16 Pv + 8.1, whereas in the foot the relationship is Pc = 1.2 Pv + 1.6. The magnitude and duration of the changes in capillary pressure were also recorded during reactive hyperemia. The venous occlusion method of measuring capillary pressure is simple and easily applied to studies in humans.  相似文献   

4.
Standard therapy for abdominal compartment syndrome is laparotomy. In many patients, laparotomy involves a recent incision; for others, volume of resuscitation may be the cause. The components separation technique allows difficult abdominal closure. The authors studied the effect of a modified separation of parts on abdominal compartment syndrome in an animal model. Eight pigs were instrumented for measurement of central venous pressure, mean arterial pressure, peak airway pressure, and intraabdominal pressure. Intraabdominal hypertension to 25 mmHg was established with intraperitoneal fluid infusion. Modified separation of parts was performed by sequential release of the abdominal wall layers. With increased intraabdominal pressure, mean arterial pressure (55.3 +/- 12.0 to 65.3 +/- 11.0), central venous pressure (7.7 +/- 2.4 to 13.3 +/- 6.9), and peak airway pressure (20.2 +/- 2.4 to 25.3 +/- 4.1; p < 0.05) also increased. Maximum intraabdominal pressure was 26.0 +/- 1.2 mmHg. Skin incision resulted in a decrease in intraabdominal pressure to 21.7 +/- 4.5, external oblique release to 18.3 +/- 3.9, internal oblique release to 13.2 +/- 4.0, and transversus muscle incision to 7.0 +/- 2.5 mmHg (p < 0.05). With completion of components separation, mean arterial pressure remained increased (63.2 +/- 16.9), central venous pressure decreased (6.8 +/- 3.6; p < 0.05), and peak airway pressure decreased (22.7 +/- 3.9; p < 0.05). Modified separation of parts technique effectively releases intraabdominal hypertension and reverses the physiologic derangements associated with abdominal compartment syndrome in the animal model.  相似文献   

5.
The reflex effects of left ventricular distension on venous return, vascular capacitance, vascular resistance, and sympathetic efferent nerve activity were examined in dogs anesthetized with sodium pentobarbital. In addition, the interaction of left ventricular distension and the carotid sinus baroreflex was examined. Vascular capacitance was assessed by measuring changes in systemic blood volume, using extracorporeal circulation with constant cardiac output and constant central venous pressure. Left ventricular distension produced by balloon inflation caused a transient biphasic change in venous return; an initial small increase was followed by a late relatively large decrease. Left ventricular distension increased systemic blood volume by 3.8 +/- 0.6 mL/kg and decreased systemic blood pressure by 27 +/- 2 mmHg (1 mmHg = 133.3 Pa) at an isolated carotid sinus pressure of 50 mmHg. These changes were accompanied by a simultaneous decrease in sympathetic efferent nerve activity. When the carotid sinus pressure was increased to 125 and 200 mmHg, these responses were attenuated. It is suggested that left ventricular mechanoreceptors and carotid baroreceptors contribute importantly to the control of venous return and vascular capacitance.  相似文献   

6.
Hypertension (mean arterial pressure, (MAP) 131 +/- 3 mmHg) developed in 18 dogs 4 weeks after left nephrectomy, deoxycorticosterone acetate (DOCA), 5 mg/kg sc twice weekly), and 0.5% NaCl drinking solution. This can be compared with MAP (95 +/- 7 mmHg) of 13 dogs with nephrectomy alone and MAP (86 +/- 4 mmHg) of dogs without nephrectomy. The two-compartment model of the circulation revealed no differences in systemic vascular compliance, compartmental compliance, or flow distribution to the compartments. However, the time constant for venous return for the compartment with the rapid time constant was increased from 0.05 +/- 0.004 min in control animals to 0.07 +/- 0.006 min in the nephrectomy alone group and 0.09 +/- 0.008 min in the hypertensive group (p less than 0.001), as a result of an increase in venous resistance. Arteriolar resistance in this compartment was also increased in the hypertensive animals, as was the mean circulatory filling pressure and overall resistance to venous return. Nifedipine (0.025-0.05 mg/kg) reduced MAP by 15% in the nephrectomy alone group and by 22% in the hypertensive group, with reduction in arteriolar resistance only in the fast time constant compartment. In the slow time constant compartment, arteriolar resistance was increased by more than 100% and flow decreased by more than 50% after nifedipine. Unilateral nephrectomy, DOCA, plus NaCl resulted in hypertension by increasing arteriolar resistance in a vascular compartment with a fast time constant for venous return. Nifedipine countered this effect by inducing arteriolar vasodilation in this compartment. In addition, nifedipine reduced the mean circulatory filling pressure and overall resistance to venous return.  相似文献   

7.
To assess the degree of circulatory fullness and to evaluate the influence of peripheral and cardiac factors in the regulation of cardiac output during pregnancy, the following studies were conducted using pentobarbital-anesthetized, open-chest nonpregnant and late term pregnant guinea pigs. Mean circulatory filling pressure was taken as the equilibrium pressure when the pulmonary artery was constricted. Total vascular compliance was assessed by +/- 5-mL changes in blood volume performed while this constriction was maintained. A separate group of guinea pigs was prepared with a pulmonary artery electromagnetic flow probe and right atrial catheter. Rapid infusion of saline was used to increase right atrial pressure while the cardiac output was determined. Pregnancy was characterized by the following changes relative to nonpregnant controls: 51Cr-labelled RBC blood volume increased from 55 +/- 3 to 67 +/- 3 mL/kg; mean circulatory filling pressure increased from 7.1 +/- 0.2 to 8.0 +/- 0.5 mmHg (1 mmHg = 133.322 Pa); right atrial pressure decreased from 3.4 +/- 0.2 to 2.1 +/- 0.3 mmHg; and cardiac output increased from 71.8 +/- 3.9 to 96.8 +/- 3.3 mL.min-1.kg-1. Total vascular compliance was not changed (2.1 +/- 0.1 mL.kg-1.mmHg-1) and most of the expanded blood volume was accommodated as unstressed volume. The cardiac function curve was shifted upwards in pregnant animals. The resistance to venous return, as determined from the slope of the venous return curves, was not changed. These data suggest that the circulation of the pregnant guinea pig is slightly overfilled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have developed a model including three serial compliant compartments (arterial, capillary, and venous) separated by two resistances (arterial and venous) for interpreting in vivo single pulmonary arterial or venous occlusion pressure profiles and double occlusion. We formalized and solved the corresponding system of equations. We showed that in this model 1) pulmonary capillary pressure (Pc) profile after arterial or venous occlusion has an S shape, 2) the estimation of Pc by zero time extrapolation of the slow component of the arterial occlusion profile (Pcao) always overestimates Pc, 3) symmetrically such an estimation on the venous occlusion profile (Pcvo) always underestimates Pc, 4) double occlusion pressure (Pcdo) differs from Pc. We evaluated the impact of varying parameter values in the model with parameter sets drawn either from the literature or from arbitrary arterial and venous pressures, being respectively 20 and 5 mmHg. Resulting Pcao-Pc differences ranged from 0.4 to 5.4 mmHg and resulting Pcvo-Pc differences ranged from -0.3 to -5.0 mmHg. Pcdo-Pc was positive or negative, its absolute value in general being negligible (< 1.1 mmHg).  相似文献   

9.
We determined effects of augmented inspiratory and expiratory intrathoracic pressure or abdominal pressure (Pab) excursions on within-breath changes in steady-state femoral venous blood flow (Qfv) and net Qfv during tightly controlled (total breath time = 4 s, duty cycle = 0.5) accessory muscle/"rib cage" (DeltaPab <2 cmH2O) or diaphragmatic (DeltaPab >5 cmH2O) breathing. Selectively augmenting inspiratory intrathoracic pressure excursion during rib cage breathing augmented inspiratory facilitation of Qfv from the resting limb (69% and 89% of all flow occurred during nonloaded and loaded inspiration, respectively); however, net Qfv in the steady state was not altered because of slight reductions in femoral venous return during the ensuing expiratory phase of the breath. Selectively augmenting inspiratory esophageal pressure excursion during a predominantly diaphragmatic breath at rest did not alter within-breath changes in Qfv relative to nonloaded conditions (net retrograde flow = -9 +/- 12% and -4 +/- 9% during nonloaded and loaded inspiration, respectively), supporting the notion that the inferior vena cava is completely collapsed by relatively small increases in gastric pressure. Addition of inspiratory + expiratory loading to diaphragmatic breathing at rest resulted in reversal of within-breath changes in Qfv, such that >90% of all anterograde Qfv occurred during inspiration. Inspiratory + expiratory loading also reduced steady-state Qfv during mild- and moderate-intensity calf contractions compared with inspiratory loading alone. We conclude that 1) exaggerated inspiratory pressure excursions may augment within-breath changes in femoral venous return but do not increase net Qfv in the steady state and 2) active expiration during diaphragmatic breathing reduces the steady-state hyperemic response to dynamic exercise by mechanically impeding venous return from the locomotor limb, which may contribute to exercise limitation in health and disease.  相似文献   

10.
Effect of abdominal compression on maximum transdiaphragmatic pressure   总被引:1,自引:0,他引:1  
Transdiaphragmatic pressure (Pdi) is lower during maximum inspiratory effort with the diaphragm alone than when maximum inspiratory and expulsive efforts are combined. The increase in Pdi with expulsive effort has been attributed to increased neural activation of the diaphragm. Alternatively, the increase could be due to stretching of the contracted diaphragm. If this were so, Pdi measured during a combined maximum effort would overestimate the capacity of the diaphragm to generate inspiratory force. This study determined the likely contribution of stretching of the contracted diaphragm to estimates of maximum Pdi (Pdimax) obtained during combined inspiratory and expulsive effort. Three healthy trained subjects were studied standing. Diaphragmatic Mueller maneuvers were performed at functional residual capacity and sustained during subsequent abdominal compression by either abdominal muscle expulsive effort or externally applied pressure. Measurements were made of changes in abdominal (Pab) and pleural (Ppl) pressure, Pdi, rib cage and abdominal dimensions and respiratory electromyograms. Three reproducible performances of each maneuver from each subject were analyzed. When expulsive effort was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 86 +/- 12 to 148 +/- 14 (SD) cmH2O within the 1st s and was 128 +/- 14 cmH2O 2 s later. When external compression was added to maximum diaphragmatic inspiratory effort, Pdimax increased from 87 +/- 16 to 171 +/- 19 cmH2O within the 1st s and was 152 +/- 16 cmH2O 2 s later.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effect of increased arterial pressure (Pa) on microvessel pressure (Pc) and edema following microvascular obstruction (100-micron glass spheres) was examined in the isolated ventilated dog lung lobe pump perfused with blood. Lobar vascular resistance (PVR) increased 2- to 10-fold following emboli when either Pa or flow was held constant. Microbead obstruction increased the ratio of precapillary to total PVR from 0.60 +/- 0.05 to 0.84 +/- 0.02 (SE) or to 0.75 +/- 0.06 (n = 6), as determined by the venous occlusion and the isogravimetric capillary pressure techniques, respectively. Isogravimetric Pc (5.0 +/- 0.7) did not differ from Pc obtained by venous occlusion (3.8 +/- 0.2 Torr, n = 6). After embolism, Pc in constant Pa decreased from 6.2 +/- 0.3 to 4.4 +/- 0.3 Torr (n = 16). In the constant-flow group, embolism doubled Pa while Pc increased only 40% (6.7 +/- 0.6 to 9.2 +/- 1.4 Torr, n = 6) with no greater edema formation than in the constant Pa groups. These data indicate poor transmission of Pa to filtering capillaries. Microembolism, even when accompanied by elevated Pa and increased flow velocity of anticoagulated blood of low leukocyte and platelet counts, caused little edema. Our results suggest that mechanical effects alone of lung microvascular obstruction cause minimal pulmonary edema.  相似文献   

12.
The abdominal muscles expand the rib cage when they contract alone. This expansion opposes the deflation of the lung and may be viewed as pressure dissipation. The hypothesis was raised, therefore, that alterations in rib cage elastance should affect the lung deflating action of these muscles. To test this hypothesis and evaluate the quantitative importance of this effect, we measured the changes in airway opening pressure (Pao), abdominal pressure (Pab), and rib cage transverse diameter during isolated stimulation of the transversus abdominis muscle in anesthetized dogs, first with the rib cage intact and then after rib cage elastance was increased by clamping the ribs and the sternum. Stimulation produced increases in Pao, Pab, and rib cage diameter in both conditions. With the ribs and sternum clamped, however, the change in Pab was unchanged but the change in Pao was increased by 77% (P < 0.001). In a second experiment, the transversus abdominis was stimulated before and after rib cage elastance was reduced by removing the bony ribs 3-8. Although the change in Pab after removal of the the ribs was still unchanged, the change in Pao was reduced by 62% (P < 0.001). These observations, supported by a model analysis, indicate that rib cage elastance is a major determinant of the mechanical coupling between the abdominal muscles and the lung. In fact, in the dog, the effects of rib cage elastance and Pab on the lung-deflating action of the abdominal muscles are of the same order of magnitude.  相似文献   

13.
To clarify the physiology of venous return (Q(vr)) in Fontan circulations, venous return conductance (G(vr)) and mean circulatory filling pressure (P(mcf)) were determined in pentobarbital sodium-anesthetized pigs. Relationships between Q(vr) and right (biventricular, n = 8) or left (Fontan, n = 8) filling pressures are described by straight lines with significant correlation coefficients. Estimated P(mcf) values were correlated with observed P(mcf) values in either circulations (P 相似文献   

14.
To study the effect of positive airway pressure (Paw) on the pressure gradient for venous return [the difference between mean systemic filling pressure (Pms) and right atrial pressure (Pra)], we investigated 10 patients during general anesthesia for implantation of defibrillator devices. Paw was varied under apnea from 0 to 15 cmH(2)O, which increased Pra from 7.3 +/- 3.1 to 10.0 +/- 2.3 mmHg and decreased left ventricular stroke volume by 23 +/- 22%. Episodes of ventricular fibrillation, induced for defibrillator testing, were performed during 0- and 15-cmH(2)O Paw to measure Pms (value of Pra 7.5 s after onset of circulatory arrest). Positive Paw increased Pms from 10.2 +/- 3.5 to 12.7 +/- 3.2 mmHg, and thus the pressure gradient for venous return (Pms - Pra) remained unchanged. Echocardiography did not reveal signs of vascular collapse of the inferior and superior vena cava due to lung expansion. In conclusion, we demonstrated that positive Paw equally increases Pra and Pms in humans and alters venous return without changes in the pressure gradient (Pms - Pra).  相似文献   

15.
We tested the hypothesis that the mechanical arrangement of costal (COS) and crural (CRU) diaphragms can be changed from parallel to series when direct or indirect transmission of tension occurs. Ratio of rib cage to abdominal displacement (RC/AB) resulting from separate COS and CRU stimulations were used to measure RC expanding action. Hyperinflation in six dogs caused RC/AB with COS and CRU stimulations to change progressively from 0.53 +/- 0.07 (SE) and 0.03 +/- 0.05 at functional residual capacity (FRC) to -0.48 +/- 0.08 and -0.46 +/- 0.05 at 68% inspiratory capacity, respectively. Liquid substitution of abdominal contents in six other dogs equalized abdominal pressure swings (delta Pab), without changing chest wall elastic properties or geometry, or costal RC/AB (0.35 +/- 0.07 before and 0.33 +/- 0.06 after) but caused crural RC/AB to change from 0.01 +/- 0.05 to 0.31 +/- 0.01. We conclude that hyperinflation changes fiber orientation, allowing direct transmission of tension between COS and CRU, which become linked mechanically in series (the diaphragm acts as a unit with RC deflating action); and equalization of delta Pab causes indirect transmission of tension between COS and CRU, which become linked in series (the diaphragm acts as a unit with RC inflating action).  相似文献   

16.
The effects of posture on the lymphatic outflow pressure and lymphatic return of albumin were examined in 10 volunteers. Lymph flow was stimulated with a bolus infusion of isotonic saline (0.9%, 12.6 ml/kg body wt) under four separate conditions: upright rest (Up), upright rest with lower body positive pressure (LBPP), supine rest (Sup), and supine rest with lower body negative pressure (LBNP). The increase in plasma albumin content (Delta Alb) during the 2 h after bolus saline infusion was greater in Up than in LBPP: 82.9 +/- 18.5 vs. -28.4 mg/kg body wt. Delta Alb was greater in LBNP than in Sup: 92.6 vs. -22.5 +/- 18.9 mg/kg body wt (P < 0.05). The greater Delta Alb in Up and Sup with LBNP were associated with a lower estimated lymphatic outflow pressure on the basis of the difference in central venous pressure (Delta CVP). During LBPP, CVP was increased compared with Up: 3.8 +/- 1.4 vs. -1.2 +/- 1.2 mmHg. During LBNP, CVP was reduced compared with Sup: -3.0 +/- 2.2 vs. 1.7 +/- 1.0 mmHg. The translocation of protein into the vascular space after bolus saline infusion reflects lymph return of protein and is higher in Up than in Sup. Modulation of CVP with LBPP or LBNP in Up and Sup, respectively, reversed the impact of posture on lymphatic outflow pressure. Thus posture-dependent changes in lymphatic protein transport are modulated by changes in CVP through its mechanical impact on lymphatic outflow pressure.  相似文献   

17.
The hemodynamic effects of increases in airway pressure (Paw) are related in part to Paw-induced increases in right atrial pressure (Pra), the downstream pressure for venous return, thus decreasing the pressure gradient for venous return. However, numerous animal and clinical studies have shown that venous return is often sustained during ventilation with positive end-expiratory pressure (PEEP). Potentially, PEEP-induced diaphragmatic descent increases abdominal pressure (Pabd). We hypothesized that an increase in Paw induced by PEEP would minimally alter venous return because the associated increase in Pra would be partially offset by a concomitant increase in Pabd. Thus we studied the acute effects of graded increases of Paw on Pra, Pabd, and cardiac output by application of inspiratory-hold maneuvers in sedated and paralyzed humans. Forty-two patients were studied in the intensive care unit after coronary artery bypass surgery during hemodynamically stable, fluid-resuscitated conditions. Paw was progressively increased in steps of 2 to 4 cmH(2)O from 0 to 20 cmH(2)O in sequential 25-s inspiratory-hold maneuvers. Right ventricular (RV) cardiac output (CO(td)) and RV ejection fraction (EF(rv)) were measured at 5 s into the inspiratory-hold maneuver by the thermodilution technique. RV end-diastolic volume and stroke volume were calculated from EF(rv) and heart rate data, and Pra was measured from the pulmonary artery catheter. Pabd was estimated as bladder pressure. We found that, although increasing Paw progressively increased Pra, neither CO(td) nor RV end-diastolic volume changed. The ratio of change (Delta) in Paw to Delta Pra was 0.32 +/- 0.20. The ratio of Delta Pra to Delta CO(td) was 0.05 +/- 00.15 l x min(-1) x mmHg(-1). However, Pabd increased such that the ratio of Delta Pra to Delta Pabd was 0.73 +/- 0.36, meaning that most of the increase in Pra was reflected in increases in Pabd. We conclude that, in hemodynamically stable fluid-resuscitated postoperative surgical patients, inspiratory-hold maneuvers with increases in Paw of up to 20 cmH(2)O have minimal effects on cardiac output, primarily because of an in-phase-associated pressurization of the abdominal compartment associated with compression of the liver and squeezing of the lungs.  相似文献   

18.
We used a new technique to estimate the pulmonary microvascular membrane reflection coefficient to plasma protein (sigma d) in anesthetized dogs. In five animals we continuously weighed the lower left lung lobe and used a left atrial balloon to increase the pulmonary microvascular pressure (Pc). We determined the relationship between the rate of edema formation (S) and Pc and estimated the fluid filtration coefficient (Kf) as delta S/delta Pc. From the S vs. Pc relationship and Kf, we estimated the Pc at which S/Kf = 10 mmHg for each dog. This pressure (P10) was 38.0 +/- 5.8 (SD) mmHg, and the plasma protein osmotic pressure (pi c) was 14.9 +/- 3.7 mmHg. In five additional dogs in which we decreased pi c to 2.9 +/- 1.7 mmHg, P10 = 27.2 +/- 2.6 mmHg. The P10 vs. pi c regression line fit to the data from all 10 dogs was P10 = 0.92 pi c +/- 24.4 mmHg (r = 0.88). We estimated sigma d from the slope of the regression line as sigma d = square root of delta P10/delta pi c. With this technique, we estimated that, with 95% probability, sigma d lies between 0.72 and unity. This is higher than most previous sigma d estimates.  相似文献   

19.
The impact of body core heating on the interaction between the cutaneous and central circulation during blood pressure challenges was examined in eight adults. Subjects were exposed to -10 to -90 mmHg lower body negative pressure (LBNP) in thermoneutral conditions and -10 to -60 mmHg LBNP during heat stress. We measured forearm vascular conductance (FVC; ml. min(-1). 100 ml(-1). mmHg(-1)) by plethysmography; cutaneous vascular conductance (CVC) by laser-Doppler techniques; and central venous pressure, arterial blood pressure, and cardiac output by impedance cardiography. Heat stress increased FVC from 5.7 +/- 0.9 to 18.8 +/- 1.3 conductance units (CU) and CVC from 0.21 +/- 0.07 to 1.02 +/- 0.20 CU. The FVC-CVP relationship was linear over the entire range of LBNP and was shifted upward during heat stress with a slope increase from 0. 46 +/- 0.10 to 1.57 +/- 0.3 CU/mmHg CVP (P < 0.05). Resting CVP was lower during heat stress (6.3 +/- 0.6 vs. 7.7 +/- 0.6 mmHg; P < 0. 05) but fell to similar levels during LBNP as in normothermic conditions. Data analysis indicates an increased capacity, but not sensitivity, of peripheral baroreflex responses during heat stress. Laser-Doppler techniques detected thermoregulatory responses in the skin, but no significant change in CVC occurred during mild-to-moderate LBNP. Interestingly, very high levels of LBNP produced cutaneous vasodilation in some subjects.  相似文献   

20.
We have investigated the effect of positive end-expiratory pressure ventilation (PEEP) on regional splanchnic vascular capacitance. In 12 anesthetized dogs hepatic and splenic blood volumes were assessed by sonomicrometry. Vascular pressure-diameter curves were defined by obstructing hepatic outflow. With 10 and 15 cmH2O PEEP portal venous pressure increased 3.1 +/- 0.3 and 5.1 +/- 0.4 mmHg (P less than 0.001) while hepatic venous pressure increased 4.9 +/- 0.4 and 7.3 +/- 0.4 mmHg (P less than 0.001), respectively. Hepatic blood volume increased (P less than 0.01) 3.8 +/- 0.9 and 6.3 +/- 1.4 ml/kg body wt while splenic volume decreased (P less than 0.01) 0.8 +/- 0.2 and 1.3 +/- 0.2 ml/kg body wt. The changes were similar with closed abdomen. The slope of the hepatic vascular pressure-diameter curves decreased with PEEP (P less than 0.01), possibly reflecting reduced vascular compliance. There was an increase (P less than 0.01) in unstressed hepatic vascular volume. The slope of the splenic pressure-diameter curves was unchanged, but there was a significant (P less than 0.05) decrease in unstressed diameter during PEEP. In conclusion, hepatic blood volume increased during PEEP. This was mainly a reflection of passive distension due to elevated venous pressures. The spleen expelled blood and thus prevented a further reduction in central blood volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号