首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six near-term ewes were instrumented to measure regional blood flows in the maternal and fetal subthoracic structures and allowed to recover for 5 days. Control blood flows were measured and 10(-3) molar forskolin was infused in the fetal hindlimb vein at 1 ml/min. After 10 min of infusion, maternal and fetal regional blood flows were measured. The fetal blood pressure was 44 +/- 3 mmHg in the control state and 40 +/- 4 mmHg after forskolin, P less than 0.056. The fetal renal vascular resistance changed from 24.4 +/- 2.4 to 17.5 +/- 1.7 mmHg.ml-1.min.g, P less than 0.005. The placenta had a control resistance of 27.7 +/- 5.0 and 25.6 +/- 5.1 mmHg.ml-1.min.g after forskolin, P less than 0.05. The placental membranes showed vasodilation: control resistance was 261 +/- 49 and 168 +/- 39 mmHg.ml-1.min.g after forskolin, P less than 0.02. The generalized vasodilation of the fetal circulation was paralleled in the maternal circulation. Forskolin, a lipid soluble diterpene, apparently had a placental clearance close to the theoretical maximum. Vasodilation was seen in the maternal renal, placental and uterine vasculatures. Maternal blood pressure was unchanged. Maternal placental vascular resistance was 47.4 +/- 3.0 mmHg.ml-1.min.g in the control state and 40.6 +/- 3.3 mmHg.ml-1.min.g after forskolin, P less than 0.02. Forskolin is a vasodilator in both the fetal and maternal circulations. The maintenance of a relatively normal blood pressure in the face of regional vasodilation shows that forskolin may have a positive inotropic effect on the fetal heart. These results indicate that neither the fetal nor the maternal ovine placental vasculature is maximally dilated in the control state.  相似文献   

2.
In an effort to examine the effects of maternal exercise on the fetus we measured maternal and fetal temperatures and blood gases and calculated uterine O2 consumption in response to three different treadmill exercise regimens in 12 chronically catheterized near-term sheep. We also measured fetal catecholamine concentrations, heart rate, blood pressure, cardiac output, blood flow distribution, blood volume, and placental diffusing capacity. Maternal and fetal temperatures increased a mean maximum of 1.5 +/- 0.5 (SE) and 1.3 +/- 0.1 degrees C, respectively. We corrected maternal and fetal blood gas values for the temperatures in vivo. Maternal arterial partial pressure of O2 (PO2), near exhaustion during prolonged (40 min) exercise at 70% maximal O2 consumption, increased 13% to a maximum of 116.7 +/- 4.0 Torr, whereas partial pressure of CO2 (PCO2) decreased by 28% to 27.6 +/- 2.2 Torr. Fetal arterial PO2 decreased 11% to a minimum of 23.2 +/- 1.6 Torr, O2 content by 26% to 4.3 +/- 0.6 ml X dl -1, PCO2 by 8% to 49.6 +/- 3.2 Torr, but pH did not change significantly. Recovery was virtually complete within 20 min. During exercise total uterine O2 consumption was maintained despite the reduction in uterine blood flow because of hemoconcentration and increased O2 extraction. The decrease of 3 Torr in fetal arterial PO2 and 1.5 ml X dl -1 in O2 content did not result in major cardiovascular changes or catecholamine release. These findings suggest that maternal exercise does not represent a major stressful or hypoxic event to the fetus.  相似文献   

3.
ObjectiveObesity in pregnancy may be associated with reduced placental transfer of 25-hydroxyvitamin D (25-OHD). The objective of this study was to examine associations between maternal BMI and maternal and cord blood levels of 25-OHD in full term neonates born to a single racial cohort residing at similar latitude. Secondary objectives were to examine associations between maternal glucose tolerance with maternal levels of 25-OHD and the relationship between cord blood 25-OHD levels and neonatal size.MethodsThis study was conducted among participants of the Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) Study meeting the following criteria: residing at latitudes 41–43°, maternal white race, and gestational age 39–41 weeks. Healthy pregnant women underwent measures of height, weight, and a 75-g fasting oral glucose tolerance test (OGTT) at approximately 28 weeks gestation. Maternal and cord blood sera were analyzed for total 25-OHD by HPLC tandem mass spectrometry. Statistical analyses included ANOVA and linear regression models.ResultsMaternal and cord blood (N = 360) mean levels (sd) of 25-OHD were 37.2 (11.2) and 23.4 (9.2) ng/ml, respectively, and these levels were significantly different among the 3 field centers (ANOVA p< 0.001). Maternal serum 25-OHD was lower by 0.40 ng/ml for BMI higher by 1 kg/m2 (p<0.001) in an adjusted model. Maternal fasting plasma glucose, insulin sensitivity, and presence of GDM were not associated with maternal serum 25-OHD level when adjusted for maternal BMI. Cord blood 25-OHD was lower by 0.26 ng/ml for maternal BMI higher by 1 kg/m2 (p<0.004). With adjustment for maternal age, field center, birth season and maternal serum 25-OHD, the association of cord blood 25-OHD with maternal BMI was attenuated. Neither birth weight nor neonatal adiposity was significantly associated with cord blood 25-OHD levels.ConclusionThese results suggest that maternal levels of 25-OHD are associated with maternal BMI. The results also suggest that interpretation of neonatal 25-OHD levels may need to incorporate specific maternal factors in addition to season of birth and latitude.  相似文献   

4.
Six healthy active women in the third trimester of pregnancy participated in a graded exercise protocol to levels of exertion perceived to be equivalent to that of their usual exercise regimen. Fetal heart rate response (FHR) was documented by ultrasound transducer and confirmed (n = 1) by ultrasonic visualization. Resting maternal O2 consumption was 277 +/- 50 (SD) ml/min and rose to 1,132 +/- 202 ml/min at a mean final exercise intensity of 79 +/- 9 W after 12.8 +/- 1.7 min on a cycle ergometer. There was no significant change in maternal serum insulin, growth hormone, glucose, or pH values. Maternal leukocyte count, hemoglobin, and venous lactate levels rose significantly during the exercise (P less than 0.05). FHR prior to exercise was 142 +/- 4 beats/min and decreased to 84 +/- 34 beats/min during exercise. The decrease in FHR was documented within 1 min of initiating exercise in all cases. During exercise, fetal movements were not accompanied by FHR accelerations. Within 1 min following the cessation of exercise, FHR rose to 143 +/- 8 beats/min and fetal movements were accompanied by FHR accelerations. Since the recovery of FHR occurred immediately after cessation of maternal exercise, this level of maternal exercise does not appear to be harmful to the fetus.  相似文献   

5.
Four concentrations of nifedipine (AdalatR, Bayer) were infused into 25 pregnant sheep of 123-140 days of gestation (term, 147 days) and the effects on the ewe and the foetus have been studied. At all doses of nifedipine infused, maternal diastolic pressure fell by about 15% and maternal heart rate increased by 33%. There was no change in blood gases or pH. Uterine activity, as measured by uterine electromyographic recordings, was reduced due to an increase in the interval between periods of activity. The duration of a burst of activity remained unaffected. The effects of nifedipine on the foetus, were similar. Mean foetal arterial pressure fell by 4-5 mmHg and heart rate rose by 15 to 50%, both changes being maintained for the duration of the infusion and the increased heart rate for longer. The electrocorticogram of the foetal sheep was unaffected by nifedipine. The effects on foetal breathing movements were small. At the concentration of 5 micrograms/kg/min for either 2 or 4 hours the breathing pattern changed so that the episodes of breathing were shorter and more frequent. The total amount of breathing per hour was unaffected. Control infusion of ethanol had little effect on the ewe except for a significant increase in lactate production. In the foetus breathing was reduced at the highest concentration used.  相似文献   

6.
The Ca++-antagonist nifedipine has been successfully employed in the treatment of non-gravid hypertension, and was found to inhibit uterine contractions in the perimenstrual period, as well as during premature labour in animal models. The use of antihypertensive drugs in pregnancy introduces the possibility of iatrogenic foetal distress. It has been established that nifedipine crosses the placental barrier in the sheep and causes a fall in mean arterial pressure and tachycardia in both the ewe and the foetus. This paper examines the effects of nifedipine on the foetus when administered to the pregnant ewe. Catheters and electrodes were implanted by surgical procedures in 15 ewes and foetal lambs between days 118 and 122 of gestation. The redistribution of foetal blood flow was measured by the radioactive microsphere injection technique. The infusion of nifedipine caused a 9% increase in the combined ventricular output (CVO) from 446 to 509 ml/min/kg in the foetus. Foetal lung blood flow increased from 29 +/- 6 to 69 +/- 14 ml/min/kg while figures for the skeletal muscle flow were 109 +/- 34 and 141 +/- 41.6 ml/min/kg. Heart and brain blood flow, expressed as percentages of CVO showed variations of 4.3 and 5.6 per cent, respectively. Blood flow in the gut, placental membranes, skin, kidney and spleen was reduced. The present results show that nifedipine, in addition to its known effects causes a redistribution of the foetal circulation.  相似文献   

7.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

8.
The influence of VIP, a potent vasodilator, on central hemodynamics, splanchnic blood flow and glucose metabolism was studied in six healthy subjects. Teflon catheters were inserted into an artery, a femoral vein and a right-sided hepatic vein. A Swan-Ganz catheter was introduced percutaneously and its tip placed in the pulmonary artery. Determinations of cardiac output, systemic, pulmonary arterial and hepatic venous pressures as well as splanchnic blood flow were made in the basal state and at the end of two consecutive 45 min periods of VIP infusion at 5 and 10 ng/kg/min, respectively. Arterial blood samples for analysis of glucose, FFA, insulin and glucagon were drawn at timed intervals. VIP infusion at 5 ng/kg/min resulted in an increase in cardiac output (55%) and heart rate (25%) as well as a reduction in mean systemic arterial pressure (15%) and vascular resistance (45%). With the higher rate of VIP infusion heart rate tended to rise further while cardiac output and arterial pressure remained unchanged. At 15 min after the end of VIP infusion the above variables had returned to basal levels. Splanchnic blood flow and free hepatic venous pressure did not change significantly. Arterial concentrations of glucose, FFA, insulin and glucagon increased during VIP infusion. At 15 min after the end of infusion the glucose levels were still significantly higher than basal (20%). Net splanchnic glucose output did not change in response to VIP infusion. It is concluded that VIP exerts a potent vasodilatory effect resulting in augmented cardiac output and lowered systemic blood pressure and vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Mechanism of foetal growth retardation caused by smoking during pregnancy   总被引:1,自引:0,他引:1  
In order to clarify the mechanism of retarded foetal growth in smoking pregnant women, foeto-placental function and maternal nutritional condition were assessed. Dehydroepiandrosterone sulfate (DHAS) loading test, measurement of cotinine which is a major metabolite of nicotine and pathohistological examination of placental villi were also made to know the effect of smoking on utero-placental circulation. In heavy smokers, urinary oestriol and serum hPL levels were lower than those in non-smokers while the maternal nutritional condition was not different from that in non-smokers. In the DHAS loading test, heavy smokers showed lower conversion of DHAS to oestradiol. In the non-stress test (NST), bradycardia and/or loss of variability of baseline foetal heart rate were noted after smoking. Levels of cotinine in maternal blood and umbilical cord blood in heavy smokers were markedly higher than those in non-smokers. Microscopic examination showed atrophic and hypovascular changes of placental villi obtained from smoking mothers. These results suggest that the retarded fetal growth in heavy smokers is due to the impairment of utero-placental circulation as a result of the vasoconstricting effect of nicotine.  相似文献   

10.
Enkephalin-containing peptides have been followed in the circulation of fetal sheep between 118-143 days gestation. Using a combination of radioimmunoassay and hplc met5-enkephalin was found in the concentration range 60-500 pg/ml and proenkephalins containing met5-enkephalin had a concentration of 150-4000 pg/ml. The concentration of both increased towards term. The sources of the enkephalin peptides was investigated by measurement of differences across the umbilical circulation and by studying the effects of fetal adrenal demedullation and chemical sympathectomy. The placenta showed a continuous net output of enkephalin peptides which increased close to term. This placental output was increased sharply by reduction of uterine blood flow either using compression of the uterine artery or through infusion of adrenaline at 35 micrograms/min into the maternal circulation. Maternal hypoxia caused by breathing 9% O2 plus 3% CO2 also increased fetal plasma enkephalin levels, although not output from the placenta. Adrenal demedullation, particularly if accompanied by chemical sympathectomy depressed fetal plasma enkephalin concentrations and sharply suppressed the fetal peptide responses to maternal hypoxia. It is concluded that the placenta and the fetal adrenal are important sources of met5-enkephalin-containing peptides in the fetal circulation. The placental production appears to be closely tied to changes in uterine perfusion and adrenal output changes in response to fetal oxygenation.  相似文献   

11.
We recently showed that a fixed volume (i.e., 40 ml) of saline infused into the venous circulation of an arterially occluded vascular bed increases muscle sympathetic nerve activity (MSNA) and blood pressure. In the present report, we hypothesized that the volume and rate of infusion would influence the magnitude of the sympathetic response. Blood pressure, heart rate, and MSNA were assessed in 13 young healthy subjects during forearm saline infusions (arrested circulation). The effects of different volumes of saline (i.e., 2%, 3%, 4%, or 5% forearm volume at 30 ml/min) and different rates of infusion (i.e., 5% forearm volume at 10, 20, or 30 ml/min) were evaluated. MSNA and blood pressure responses were linked with the infusion volume. Infusion of 5% of forearm volume evoked greater MSNA responses than did infusion of 2% of forearm volume (Δ11.6 ± 1.9 vs. Δ3.1 ± 1.8 bursts/min and Δ332 ± 105 vs. Δ38 ± 32 units/min, all P < 0.05). Moreover, greater MSNA responses were evoked by saline infusion at 30 ml/min than 10 ml/min (P < 0.05). Sonographic measurements confirmed that the saline infusions induced forearm venous distension. The results suggest that volume and rate of saline infusion are important factors in evoking sympathetic activation. We postulate that venous distension contributes to cardiovascular autonomic adjustment in humans.  相似文献   

12.
Gastric emptying is a determinant of the postprandial glycemic and cardiovascular responses to oral carbohydrate. We evaluated the effects of a solid meal on gastric emptying and the glycemic and cardiovascular responses to oral glucose in healthy older subjects. Ten subjects aged 72.1 +/- 1.9 yr were studied. Each subject had measurements of gastric emptying, blood glucose, serum insulin, blood pressure, and heart rate after ingestion of a 50-g glucose drink (300 ml) with (mixed meal) or without (liquid only) a solid meal (300 g ground beef). Gastric emptying of liquid was initially slightly more rapid (P < 0.05) after the mixed meal compared with liquid only at 5 min (92.0 +/- 1.5 vs. 96.0 +/- 1.3%) and much slower (P < 0.05) after 120 min. The time to peak blood glucose was less (39.0 +/- 4.0 vs. 67.5 +/- 10.3 min; P < 0.01) and blood glucose subsequently lower (P < 0.01) after the mixed meal. The increase in serum insulin was greater (P < 0.001) after the mixed meal. Blood pressure fell (P < 0.05) in the first 30 min, with no difference between the two meals. Increase in heart rate after both meals (P < 0.005), was greater (P < 0.05) after the mixed meal. The presence of a noncarbohydrate solid meal had discrepant effects on early and subsequent emptying of a nutrient liquid, which affects postprandial glycemia and increased heart rate.  相似文献   

13.
Maternal and fetal concentrations of plasma insulin, pancreatic glucagon, growth hormone (GH), corticosteroids and enteroglucagon, and of blood glucose and lactate, were measured in well-fed, late pregnant ewes before, during and after walking on a treadmill at 0.7 m.s-1, 10 degrees slope for 60 min. Exercise caused rapid and substantial increases in maternal concentrations of glucose, lactate, pancreatic glucagon and corticosteroids, smaller but significant decreases in levels of GH and enteroglucagon, and no change in insulin. With the exception of GH, concentrations of these maternal hormones had returned to pre-exercise levels within 20 min of stopping exercise. The exercise-induced maternal hyperglycaemia was associated with a proportionately similar, rapid increase in fetal blood glucose; fetal blood lactate and plasma corticosteroids also increased, but at slower rates and other fetal hormone concentrations were unchanged. During recovery there was a rapid increase in fetal insulin levels. The results are discussed in terms of the regulation of exercise-induced changes in maternal energy metabolism, and fetal metabolic and hormonal sensitivity to these changes.  相似文献   

14.
High levels of ethanol (EtOH) consumption during pregnancy adversely affect fetal development; however, the effects of lower levels of exposure are less clear. Our objectives were to assess the effects of daily EtOH exposure (3.8 USA standard drinks) on fetal-maternal physiological variables and the fetal brain, particularly white matter. Pregnant ewes received daily intravenous infusions of EtOH (0.75 g/kg maternal body wt over 1 h, 8 fetuses) or saline (8 fetuses) from 95 to 133 days of gestational age (DGA; term ~145 DGA). Maternal and fetal arterial blood was sampled at 131-133 DGA. At necropsy (134 DGA) fetal brains were collected for analysis. Maternal and fetal plasma EtOH concentrations reached similar maximal concentration (~0.11 g/dl) and declined at the same rate. EtOH infusions produced mild reductions in fetal arterial oxygenation but there were no changes in maternal oxygenation, maternal and fetal Pa(CO(2)), or in fetal mean arterial pressure or heart rate. Following EtOH infusions, plasma lactate levels were elevated in ewes and fetuses, but arterial pH fell only in ewes. Fetal body and brain weights were similar between groups. In three of eight EtOH-exposed fetuses there were small subarachnoid hemorrhages in the cerebrum and cerebellum associated with focal cortical neuronal death and gliosis. Overall, there was no evidence of cystic lesions, inflammation, increased apoptosis, or white matter injury. We conclude that daily EtOH exposure during the third trimester-equivalent of ovine pregnancy has modest physiological effects on the fetus and no gross effects on fetal white matter development.  相似文献   

15.
Maternal stress and malnutrition modify intrauterine fetal development with impact on postnatal blood pressure, nutrient, water, and electrolyte metabolism. The present study explored the possible involvement of maternal serum- and glucocorticoid-inducible kinase (SGK)-1 in fetal programming of blood pressure. To this end, wild-type (sgk1(+/+)) male mice were mated with SGK1 knockout (sgk1(-/-)) female mice, and sgk1(-/-) males with sgk1(+/+) females, resulting in both cases in heterozygotic (sgk1(-/+)) offspring. Following prenatal protein restriction, the offspring of sgk1(+/+) mothers gained weight significantly slower and had significantly higher blood pressure after birth. Moreover, a sexual dimorphism was apparent in fasting blood glucose and plasma corticosterone concentrations, with higher levels in female offspring. In contrast, prenatal protein restriction of sgk1(-/-) mothers had no significant effect on postnatal weight gain, blood pressure, plasma glucose concentration, or corticosterone levels, irrespective of offspring sex. Plasma aldosterone concentration, urinary flow rates, and urinary excretions of Na(+) and K(+) were not significantly modified by either maternal genotype or nutritional manipulation. In conclusion, maternal signals mediated by SGK1 may play a decisive role in fetal programming of hypertension induced by prenatal protein restriction.  相似文献   

16.
Postprandial hypotension (PPH) occurs frequently in the elderly; the magnitude of the fall in blood pressure (BP) is related to the rate of glucose entry into the duodenum during intraduodenal glucose infusion and spontaneous gastric emptying (GE). It is unclear if glucose concentration affects the hypotensive response. Gastric distension may attenuate PPH; therefore, meal volume could influence the BP response. We aimed to determine the effects of 1) drink volume, 2) glucose concentration, and 3) glucose content on the BP and heart rate (HR) responses to oral glucose. Ten subjects (73.9 +/- 1.2 yr) had measurements of BP, GE, and blood glucose on 4 days after 1) 25 g glucose in 200 ml (12.5%), 2) 75 g glucose in 200 ml (37.5%), 3) 25 g glucose in 600 ml (4%), and 4) 75 g glucose in 600 ml (12.5%). GE, BP, HR, and blood glucose were measured for 180 min. After all drinks, duodenal glucose loads were similar in the first 60 min. Regardless of concentration, 600-ml (but not 200-ml) drinks initially increased BP, and in the first 30 min, systolic BP correlated (P < 0.01) with volume in both the proximal and total stomach. At the same concentration (12.5%), systolic BP fell more (P = 0.02) at the smaller volume; at the same volumes, there were no effects of concentration on BP. There was no difference in the glycemic response to drinks of identical glucose content. We conclude that 1) ingestion of glucose at a higher volume attenuates and 2) under constant duodenal load, glucose concentration (4-37%) does not affect the fall in BP.  相似文献   

17.
The aim of the present study was to examine the effect of lipopolysaccharide (LPS) on the levels of prostaglandin E(2) (PGE(2)) in the perfusates of the fetal and the maternal compartments of perfused human term placental tissue. Term placentas were perfused for 10h in the absence [control, (n=4)] and presence of LPS [LPS=1 microg/kg perfused placental tissue, (n=4)] in the maternal reservoir. Perfusate samples from the fetal and the maternal circulations were collected every 30 min and examined for PGE(2) levels by radio-immunoassay. PGE(2) levels in the fetal circulation were gradually increased reaching significant peak value of 479+/-159 pg/ml, as compared to PGE(2) levels in the maternal circulation (140+/-146 pg/ml) (p<0.05). After 10 hours of perfusion with control medium, PGE(2) levels in the maternal circulation (347+/-144 pg/ml) were significantly higher as compared to the fetal circulation (150+/-57 pg/ml) (p<0.05). In presence of LPS, PGE(2) levels in the fetal circulation increased reaching a peak value of 1028+/-663 pg/ml after 240 min of perfusion. The levels of PGE(2) in the control group after 240 min of perfusion were significantly lower (156+/-77 pg/ml) (p<0.05). No significant differences were detected in the levels of PGE(2) in the perfusate of the maternal compartment in presence of LPS, as compared to control. Our results suggest that the placenta may play an important role in maintaining high levels of PGE(2) in the fetal circulation and low PGE(2) levels in the maternal circulation during normal pregnancy. Moreover, placental PGE(2) release into the fetal and the maternal circulations may be differently affected in presence of intra-uterine infection/inflammation.  相似文献   

18.
Radioactively-labeled microspheres were used to quantify adjustments of regional blood flows in 15 snakes (Elaphe obsoleta) subjected to 45 degrees head-up tilt. Heart rate and peripheral vascular resistance increased during tilt to compensate for the passive drop of pressure at the head. Two snakes failed to regulate blood pressure, but in 13 others arterial pressure increased at midbody (where passive changes in pressure are unexpected due to tilt alone) and arterial pressure at the head averaged 67% of the pretilt value. Tissue blood flow was reduced significantly in visceral organs, posterior skin and posterior skeletal muscle, but was maintained at pretilt levels in brain, heart, lung and anterior tissues. Ventricular systemic output averaged 24 ml/min X kg in horizontal posture and 9.4 ml/min X kg during tilt. Comparable values for pulmonary output were 4 and 6.5 ml/min X kg. Patterns of intraventricular shunting of blood acted to maintain pulmonary flow during tilt. A large right-to-left shunt (mean 76%) was present in horizontal snakes, but the shunted fraction declined during tilt (mean 54%). Left-to-right shunt increased during tilt from 7% to 14%.  相似文献   

19.
In 30 experiments performed on 5 pregnant sheep, the rate of glucose transfer from the placenta to fetus via the umbilical circulation was measured while varying uterine blood flow by means of a cuff-type occluder and while maintaining a constant maternal glucose concentration by means of a 'glucose clamp'. Over the range of uterine blood flows obtained, there was no significant effect on the simultaneously measured umbilical blood flow. Fetal glucose uptake and arterial glucose concentration remained normal as the uterine blood flow rate decreased from 600 to 300 ml per min per kg of fetus. At blood flow rates less than 300 ml.min-1.kg-1, the fetal glucose uptake decreased and became negative in one instance while the arterial glucose concentration became variable and markedly increased in 2 animals. This increase in fetal glucose concentration was associated with a decrease in the uterine oxygen delivery rate, a decrease in fetal oxygen content and a decrease in fetal oxygen uptake. These observations support the concept that fetal glucose metabolism is altered by severe hypoxia and demonstrate that there is little effect of uterine blood flow on fetal glucose uptake in the normal physiological range.  相似文献   

20.
Characterization and metabolism of ovine foetal lipids   总被引:6,自引:4,他引:2  
1. Total phospholipid concentrations in liver, kidney and brain of the 140-day ovine foetus were only half of those in comparable maternal tissues. 2. Phosphatidylcholine was the predominant phospholipid in all foetal tissues examined. The most striking difference between foetal and maternal tissues in individual phospholipids was in the heart; foetal heart contained more ethanolamine plasmalogen than choline plasmalogen, whereas in adult tissue the concentration of these was reversed. Sphingomyelin content of foetal brain was only one-sixth of that of maternal brain tissue. 3. Oleic acid (18:1) was the predominant acid in the phospholipid extracted from foetal tissues, except in brain where palmitic acid (16:0) was slightly higher. In phospholipids from adult tissues there was a higher proportion of unsaturated fatty acids (linoleic acid, 18:2, and linolenic acid, 18:3) and a correspondingly lower proportion of oleic acid (18:1). The distribution of fatty acids in the neutral lipid fraction of foetal and maternal tissues was very similar; oleic acid (18:1) was generally the principal component. 4. (14)C derived from [U-(14)C]-glucose and [U-(14)C]fructose infused into the foetal circulation in utero was incorporated into the neutral lipids and phospholipids of heart, liver, kidney, brain and adipose tissue. 5. Phospholipid analysis revealed that the specific activity of phosphatidic acid was higher in liver than in other tissues. The specific activity of phosphatidylethanolamine was less than that of phosphatidylcholine in heart, but in other tissues they were about the same. The specific activities of phosphatidylinositol and phosphatidic acid in brain were very similar and were higher than the other components. The specific activity of phosphatidylserine was highest in liver and brown fat. 6. The pattern of incorporation of (14)C derived from [(14)C]glucose and [(14)C]fructose into foetal neutral lipids was similar. Diglyceride accounted for most of the radioactivity in brain, whereas triglyceride had more label in heart, liver, kidney and fat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号