首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Retinoid X receptor (RXR) plays a central role in the regulation of intracellular receptor signaling pathways by acting as a ubiquitous heterodimerization partner of many nuclear receptors, including the orphan receptor Nur77 (also known as TR3 [corrected] or NGFI-B), which translocates from the nucleus to mitochondria, where it interacts with Bcl-2 to induce apoptosis. Here, we report that RXRalpha is required for nuclear export and mitochondrial targeting of Nur77 through their unique heterodimerization that is mediated by dimerization interfaces located in their DNA-binding domain. The effects of RXRalpha are attributed to a putative nuclear export sequence (NES) present in its carboxyl-terminal region. RXRalpha ligands suppress NES activity by inducing RXRalpha homodimerization or altering RXRalpha/Nur77 heterodimerization. The RXRalpha NES is also silenced by RXRalpha heterodimerization with retinoic acid receptor or vitamin D receptor. Consistently, we were able to show that the mitochondrial targeting of the RXRalpha/Nur77 heterodimer and its induction of apoptosis are potently inhibited by RXR ligands. Together, our results reveal a novel nongenotropic function of RXRalpha and its involvement in the regulation of the Nur77-dependent apoptotic pathway [corrected]  相似文献   

3.
4.
Many members of the type II nuclear receptor subfamily function as heterodimers with the retinoid X receptor (RXR). A permissive heterodimer (e.g. peroxisome proliferator-activated receptor/RXR) allows for ligand binding by both partners of the receptor complex. In contrast, RXR has been thought to be incapable of ligand binding in a nonpermissive heterodimer, such as that of thyroid hormone receptor (TR)/RXR, where it has been referred to as a silent partner. However, we recently presented functional evidence suggesting that RXR in the TR/RXR heterodimer can bind its natural ligand 9-cis-RA in cells. Here we extended our study of the interrelationship of TR and RXR. We examined the potential modulatory effect of RXR and its ligand on the activity of TR, primarily using a Gal4-TR chimera. This study led to several novel and unexpected findings: 1) heterodimerization of apo-RXRalpha (in the absence of 9-cis-RA) with Gal4-TR inhibits T3-mediated transactivation; 2) the inhibition of Gal4-TR activity by RXRalpha is further enhanced by 9-cis-RA; 3) two different RXR subtypes (alpha and beta) differentially modulate the activity of Gal4-TR; 4) the N-terminal A/B domains of RXR alpha and beta are largely responsible for their differential modulation of TR activity; and 5) the RXR ligand 9-cis-RA appears to differentially affect T3-mediated transactivation from the Gal4-TR/RXRalpha (which is inhibited by 9-cis-RA) and TRE-bound TR/RXRalpha (which is further activated by 9-cis-RA) heterodimers. Taken together, these results further support our recent proposal that the RXR component in a TR/RXR heterodimer is not silent and, more importantly, reveal novel aspects of regulation of the activity of the TR/RXR heterodimer by RXR and RXR ligand.  相似文献   

5.
6.
7.
8.
9.
10.
Human vitamin D receptor (hVDR) fused to glutathione S-transferase was utilized to detect a VDR-interacting protein (VIP) of approximately 170 kDa. VIP(170) is expressed in osteoblast-like ROS 17/2.8 cells and, to a lesser extent, in COS-7 and HeLa cells. VIP(170) may be a coactivator because it interacts only with 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) ligand-bound hVDR and because a mutation (E420A) in the activation function-2 (AF-2) of hVDR abolishes both receptor-mediated transactivation and VIP(170) binding. Unlike L254G hVDR, a heterodimerization mutant with an intact AF-2, the E420A mutant is only partially attenuated in its association with the retinoid X receptor (RXR) DNA-binding partner. Finally, the ability of overexpressed hVDR to squelch glucocorticoid receptor-mediated transactivation is lost in both the L254G and E420A mutants. These results suggest that several protein-protein interactions, including VDR association with RXR and VIP(170), are required for stabilization of a multimeric complex that transduces the signal for 1,25(OH)(2)D(3)-elicited transactivation.  相似文献   

11.
12.
13.
14.
In our previous studies, the TR4 orphan nuclear receptor (TR4) has been demonstrated to suppress retinoic acid (RA)-induced transactivation via a negative feedback control mechanism and in situ analysis showed that TR4 is extensively expressed in mouse brain, especially in regions where the cells are proliferating. To further study the potential roles of TR4 during cell differentiation, a tetracycline-inducible system with anti-sense TR4 in teratocarcinoma P19 cell lines was generated to analyze the retinoic acid-induced differentiation of these cells. The results indicated that the expression of TR4 reduced by doxycycline anti-sense TR4 would alter the retinoic acid-induced differentiation pathway that results in the changes of cell morphology and cell cycle profile. Unexpectedly, our data further indicated that the RA-induced apoptosis, judging by DNA fragmentation, could also be altered by the induction of anti-sense TR4. Together, these findings provide the first in vivo evidence that an orphan nuclear receptor, such as TR4, may play major roles in the RA-mediated apoptosis or differentiation in P19 cells.  相似文献   

15.
In eukaryotic cells, the ubiquitin-proteasome pathway is the major mechanism for targeted degradation of proteins. We show that, in F9 cells and in transfected COS-1 cells, the nuclear retinoid receptors, retinoic acid receptor gamma2 (RARgamma2), RARalpha1, and retinoid X receptor alpha1 (RXRalpha1) are degraded in a retinoic acid-dependent manner through the ubiquitin-proteasome pathway. The degradation of RARgamma2 is entirely dependent on its phosphorylation and on its heterodimerization with liganded RXRalpha1. In contrast, RARalpha1 degradation can occur in the absence of heterodimerization, whereas it is inhibited by phosphorylation, and heterodimerization reverses that inhibition. RXRalpha1 degradation is also modulated by heterodimerization. Thus, each partner of RARgamma/RXRalpha and RARalpha/RXRalpha heterodimers modulates the degradation of the other. We conclude that the ligand-dependent degradation of RARs and RXRs by the ubiquitin-proteasome pathway, which is regulated by heterodimerization and by phosphorylation, could be important for the regulation of the magnitude and duration of the effects of retinoid signals.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号