首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a major role in adipogenesis. PPARgamma binds to DNA as a heterodimer with retinoid X receptor (RXR), and PPARgamma-RXR can be activated by ligands specific for either receptor; the presence of both ligands can result in a cooperative effect on the transactivation of target genes. How these ligands mediate transactivation, however, remains unclear. PPARgamma is known to interact with both the p160/SRC-1 family of coactivators and the distinct, multisubunit coactivator complex called DRIP. A single DRIP subunit, DRIP205 (TRAP220, PBP), binds directly to PPARgamma. Here we report that PPARgamma and RXR selectively interacted with DRIP205 and p160 proteins in a ligand-dependent manner. At physiological concentrations, RXR-specific ligands only induced p160 binding to RXR, and PPARgamma-specific ligands exclusively recruited DRIP205 but not p160 coactivators to PPARgamma. This selectivity was not observed in interaction assays off DNA, implying that the specificity of coactivator binding in response to ligand is strongly influenced by the allosteric effects of DNA-bound heterodimers. These coactivator-selective effects were also observed in transient-transfection assays in the presence of overexpressed p160 or DRIP coactivators. The results suggest that the cooperative effects of PPARgamma- and RXR-specific ligands may occur at the level of selective coactivator recruitment.  相似文献   

7.
The role of thyroid hormone in Xenopus metamorphosis is particularly well understood as it plays an essential role in that process. However, recent evidence suggests that thyroid hormone may play an earlier role in amphibian embryogenesis. We demonstrate that Xenopus thyroid hormone receptor beta (XTR beta) is expressed shortly after neural fold closure, and that its expression is localized to the developing retina. Retinoid X receptor gamma (RXR gamma), a potential dimerization partner for XTR beta, was also found to be expressed in the retina at early stages, and at later stages RXR gamma was also expressed in the liver diverticulum. Addition of either thyroid hormone or 9-cis retinoic acid, the ligands for XTR beta and RXR gamma, respectively, did not alter the expression of their receptors. However, the addition of thyroid hormone and 9-cis retinoic acid did alter rhodopsin mRNA expression. Addition of thyroid hormone generates a small expansion of the rhodopsin expression domain. When 9-cis retinoic acid or a combination of thyroid hormone and 9-cis retinoic acid was administered, there was a decrease in the expression domain of rhodopsin in the developing retina. These results provide evidence for an early role for XTR beta and RXR gamma in the developing Xenopus retina.  相似文献   

8.
Recently, many lines of evidence have been accumulated indicating that thyroid hormone receptor (TR) and retinoic acid receptor (RAR) undergo a ligand-dependent conformation change. Since most of these results were obtained by either gel-shift assay or circular dichroism spectroscopic studies, it was not clear which part of the receptor bore the major conformational change. Moreover, it is not clear whether the formation of heterodimer between TR or RAR and retinoic X receptor (RXR) has any effects on this structural change. Utilizing partial proteolytic analysis, we demonstrated that thyroid hormone and retinoic acid induce a specific protease-resistant conformation to their cognate receptors. Studies of various deletion mutants reveal that the entire ligand binding domain of these receptors is involved in this change, and suggest that ligand may induce a more compact structure in its binding domain. Evidence from native gel electrophoresis supports this notion. This conformational change occurs in the absence of DNA and occurs indenpendently of other domains in the receptor. Heterodimerization between TR or RAR and the RXR has little effect on receptor conformation in the absence of hormone but does enhance the ligand-dependent structural change. Interestingly, dual hormone treatment, i.e. thyroid hormone and 9-cis RA, intensifies this enhancement. We suggest that the observed protease-resistant conformation may introduce a different configuration to the receptor and therefore may effect the receptor in various ways, but most likely is involved in converting the receptor from a negative regulator to a positive activator.  相似文献   

9.
10.
11.
12.
13.
14.
Involvement of retinoid X receptor alpha in coenzyme Q metabolism   总被引:1,自引:0,他引:1  
The nuclear retinoid X receptor alpha (RXRalpha) is the heterodimer partner in several nuclear receptors, some of them regulating lipid biosynthesis. Since coenzyme Q (CoQ) levels are greatly modified in aging and a number of diseases, we have investigated the involvement of RXRalpha in the biosynthetic regulation of this lipid by using a hepatocyte-specific RXRalpha-deficient mouse strain (RXRalpha-def). In the receptor-deficient liver, the amount of CoQ decreased to half of the control, and it was demonstrated that this decrease was caused by a significantly lowered rate of biosynthesis. On the other hand, induction of CoQ was extensive in both control and RXRalpha-def liver using the peroxisomal inducer di(2-ethylhexyl)phthalate (DEHP). Since the RXRalpha deficiency was specific to liver, no change in CoQ content or biosynthesis was observed in kidney. The other mevalonate pathway lipids, cholesterol and dolichol, were unchanged in the RXRalpha-def liver. Upon treatment with DEHP, cholesterol decreased in the control but remained unchanged in the receptor-deficient mice. In control mice, cold exposure elevated CoQ levels by 60%, but this induction did not occur in the liver of RXRalpha-def mice. In contrast, PPARalpha-null mice, which lack induction upon treatment with peroxisomal inducers, respond to cold exposure and CoQ content is increased. The amount of cholesterol decreased in both control and RXRalpha-def liver upon cold treatment. The results demonstrate that RXRalpha is required for CoQ biosynthesis and for its induction upon cold treatment, but does not appear to be involved in the basic synthesis of cholesterol and dolichol. The receptor is not involved in the elevated CoQ biosynthesis during peroxisomal induction.  相似文献   

15.
The binding of thyroid hormone receptors to DNA is enhanced by heterodimerization with nuclear proteins. One such heterodimerization partner has recently been characterized as the retinoid X receptor. 9-cis-Retinoic acid has been identified as a natural ligand for retinoid X receptors, suggesting a potential receptor-mediated interaction between thyroid hormone and 9-cis-retinoic acid in the regulation of thyroid hormone-responsive genes. A transient cotransfection assay was used to test for such an interaction. When a complex thyroid hormone response element composed of both direct and inverted repeat hexamers was tested, these two ligands activated gene expression synergistically. In contrast, when the response element consisted only of directly repeated hexamers, unliganded retinoid X receptors enhanced thyroid hormone responsiveness, but 9-cis-retinoic acid induced no additional activation. The results suggest a unique mechanism to achieve differential suggest a unique mechanism to achieve differential thyroid hormone sensitivity of thyroid hormone-responsive genes within a cell. Genes with appropriate response elements will show amplification of the thyroid hormone response by 9-cis-retinoic acid in the presence of retinoid X receptors; other thyroid hormone-responsive genes will be influenced by retinoid X receptors, but not 9-cis-retinoic acid.  相似文献   

16.
17.
Retinoid X receptor (RXR) agonists are candidate agents for the treatment of metabolic syndrome and type 2 diabetes via activation of peroxisome proliferator-activated receptor (PPAR)/RXR or liver X receptor (LXR)/RXR-heterodimers, which control lipid and glucose metabolism. Reporter gene assays or binding assays with radiolabeled compounds are available for RXR ligand screening, but are unsuitable for high-throughput screening. Therefore, as a first step towards stabilizing a fluorescence polarization (FP) assay system for high-throughput RXR ligand screening, we synthesized fluorescent RXR ligands by modification of the lipophilic domain of RXR ligands with a carbostyril fluorophore, and selected the fluorescent RXR agonist 6-[ethyl(1-isobutyl-2-oxo-4-trifluoromethyl-1,2-dihydroquinolin-7-yl)amino]nicotinic acid 8d for further characterization. Compound 8d showed FP in the presence of RXR and the FP was decreased in the presence of the RXR agonist LGD1069 (2). This compound should be a lead compound for use in high-throughput assay systems for screening RXR ligands.  相似文献   

18.
Many members of the thyroid hormone/retinoid receptor subfamily (type II nuclear receptors) function as heterodimers with the retinoid X receptor (RXR). In heterodimers which are referred to as permissive, such as peroxisome proliferator activated receptor/RXR, both partners can bind cognate ligands and elicit ligand-dependent transactivation. In contrast, the thyroid hormone receptor (TR)/RXR heterodimer is believed to be nonpermissive, where RXR is thought to be incapable of ligand binding and is often referred to as a silent partner. In this report, we used a sensitive derepression assay system that we developed previously to reexamine the TR/RXR interrelationship. We provide functional evidence suggesting that in a TR/RXR heterodimer, the RXR component can bind its ligand in vivo. Ligand binding by RXR does not appear to directly activate the TR/RXR heterodimer; instead, it leads to a (at least transient or dynamic) dissociation of a cellular inhibitor(s)/corepressor(s) from its TR partner and thus may serve to modulate unliganded TR-mediated repression and/or liganded TR-mediated activation. Our results argue against the current silent-partner model for RXR in the TR/RXR heterodimer and reveal an unexpected aspect of cross regulation between TR and RXR.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号