首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of 1-MCP on the vase life and ethylene response of cut flowers   总被引:1,自引:0,他引:1  
Pretreatment for 6 h with low concentrations of 1-MCP (1-Methylcyclopropene, formerly designated as SIS-X), a cyclic ethylene analog, inhibits the normal wilting response of cut carnations exposed continuously to 0.4 l·l–1 ethylene. The response to 1-MCP was a function of treatment concentration and time. Treatment with 1-MCP was as effective in inhibiting ethylene effects as treatment with the anionic silver thiosulfate complex (STS), the standard commercial treatment. Other ethylene-sensitive cut flowers responded similarly to carnations. In the presence of 1 l·l–1 ethylene, the vase life of 1-MCP-treated flowers was up to 4 times that of the controls.Abbreviations 1-MCP 1-Methylcyclopropene - STS silver thiosulfate  相似文献   

2.
Prevention of ethylene- and shipping-induced flower abscission is necessary to maintain the quality of both cut flowers and potted plants during handling, transport and retail display. The aims of the present work were to determine the sensitivity of Plectranthus cultivars to applied ethylene, to alleviate ethylene- and shipping-induced flower abscission in intact potted plants using 1-methylcyclopropene (1-MCP), and to investigate the possible causes of dark-induced flower abscission. All cultivars were sensitive to ethylene in a concentration-dependent manner, and complete abscission occurred within 24 h with 1 and 2 μl l 1 ethylene. Unopened buds were more sensitive to applied ethylene, and exhibited greater abscission than open flowers. Ethylene synthesis remained below detection limits at all time points under control and continuous dark conditions. Dark treatment significantly increased flower abscission in Plectranthus cultivars, and like ethylene-induced flower abscission, this could be prevented by continuous 1-MCP treatment. Gene expression of ethylene biosynthetic enzymes ACS and ACO was examined as possible causes for the accelerated flower abscission observed in plants kept in continuous darkness. Expression patterns of ACS and ACO varied between different cultivars of Plectranthus. In some cases, increased expression of ACS and ACO led to increased flower abscission. Gene expression was higher in open flowers when compared to unopened flowers suggesting a cause for the observed preferential shedding of open flowers in some cultivars. Although the cause of dark-induced abscission in Plectranthus remains elusive, it can be effectively controlled by treatment with 1-MCP.  相似文献   

3.
4.
The phytohormone ethylene can cause adverse effects in plants, including inhibition of shoot elongation and abscission of leaves, flowers and fruits. 1-Methylcyclopropene (1-MCP) is a competitive inhibitor of ethylene binding with the ethylene receptors and prevents ethylene responses. To determine the effectiveness of 1-MCP as an ethylene prophylactic for cotton, an assay system was developed that integrated analyses of leaf declination, shoot elongation and ethylene-responsive gene expression (GhACS6, GhACO5, GhEIN4, GhLTL1). Using a flow-through controlled growth system, the optimal parameters of ethylene treatment in eliciting responses and of 1-MCP treatment in preventing these responses, were determined. Shoot elongation and gene expression changes in response to ethylene correlated well, but gene expression changes were found to offer a more robust estimate of ethylene responsiveness. The effect of ethylene treatment on the expression of the marker genes was determined to be optimal with 3?h of 10???L?L?1 fumigation. 250?nL?L?1 of gaseous 1-MCP provided for 1?h immediately before ethylene fumigation was highly efficacious at preventing ethylene responses, but the duration of protection did not exceed 48?h. A liquid formulation of 1-MCP designed for field use was found to be equally effective as the gas. The results, and the system described, may prove useful in increasing 1-MCP efficacy as a tool to manage the negative effects of stress ethylene in cotton crops.  相似文献   

5.
1-Methylcyclopropene (1-MCP), formerly designated as Sis-X, has been shown to be an effective inhibitor of ethylene responses in carnation flowers in either the light or the dark. The binding appears to be to the receptor and to be permanent. A 6 h treatment at 2.5 nl l–1 is sufficient to protect against ethylene, and 0.5 nl l–1 is sufficient if exposure is for 24 h. As carnation flowers age, a little higher concentration appears to be needed. Most of the natural increase in ethylene production during senescence is prevented by treatment with 1-MCP. A closely related compound, methylenecyclopropane shows ethylene activity. A tritium labelled 1-MCP (60 mCi mmol–1) has been prepared. A higher specific activity is needed for more critical studies.  相似文献   

6.
1-MCP对东方百合开放与衰老的影响   总被引:3,自引:0,他引:3  
以东方系列百合(Lilium spp.)‘西伯利亚’品种为材料,研究了1-甲基环丙烯(1-MCP)对百合切花质膜透性、乙烯释放量、丙二醛含量、可溶性蛋白质含量等生理指标的影响。结果表明:1-MCP可延缓百合切花花瓣质膜相对透性的增加,延长百合切花瓶插寿命;降低百合花瓣乙烯释放量,推迟乙烯峰的出现;降低百合花瓣丙二醛含量,对可溶性蛋白含量的变化无明显影响。本研究结果说明1-MCP对东方百合切花的保鲜有一定效果,确定了1-MCP处理东方百合的最佳使用浓度为0.01μL/L。  相似文献   

7.
Aims: A microbiological bioassay using Geoacillus stearothermophilus was optimized to detect betalactams at concentrations near to the Maximum Residue Limits (MRLs), with low cross‐specificity for tetracycline. Methods and Results: A factorial design (3 × 4) was used to evaluate the effects of concentration of spores (2·0 × 106, 4·0 × 106 and 8·0 × 106 spores ml?1) and incubation time (3·0, 3·5, 4·0 and 4·5 h) on the response of the bioassay. Then, desirability function to raise the detection capabilities (CCβ) of tetracyclines and increase sensitivity to betalactams was implemented. Significant effects of Log[S] and incubation time [It] on the CCβ of betalactams and tetracyclines were observed. Finally, high value of global desirability (D = 0·853), adequate betalactams CCβ (3·8 μg l?1 of penicillin ‘G’, 27 μg l?1 of oxacillin, 8·1 μg l?1 of ampicillin, 48 μg l?1 of cloxacillin) and high tetracyclines CCβ (5260 μg l?1 chlortetracycline, 1550 μg l?1 of oxytetracycline, 1070 μg l?1 of tetracycline) were calculated. Conclusions: The application of chemometric tools allows the optimization of a bioassay that detects betalactam residues in milk. The more robust conditions have been achieved in Log[S] = 6·30 and [It] = 4·20 h. Significance and Impact of the Study: The logistic regression model and the desirability function are adequate chemometric techniques to improve the properties of the methods, because it is possible to increase sensitivity and decrease cross‐specificity simultaneously.  相似文献   

8.
1-甲基环丙烯对百合采后切花某些生理指标的影响   总被引:9,自引:0,他引:9  
百合切花经1-甲基环丙烯(1-MCP)处理后瓶插寿命延长,花朵发育和衰老进程延缓,乙烯峰出现时间推迟.经1-MCP处理的亚洲百合的乙烯峰值和细胞膜透性降低,而麝香百合可溶性蛋白质含量则不受影响.  相似文献   

9.
To understand how lignin synthesis is regulated after harvest, detached green asparagus stalks (Asparagus officinalis L.) were treated with 1 μl l−1 of 1-methylcyclopropene (1-MCP), 50 μg l−1 gibberellic acid (GA3), 2% (v:v) ethanol or 1 μl l−1 ethylene. The results showed that lignin concentration in asparagus stalks stored at room temperature rapidly increased. Three conventional precursors of lignin, 4-hydroxycinnamic acid (coumaric acid), 3,4-dihydroxycinnamic acid (caffeic acid) and 4-hydroxy-3-mythoxycinnamic acid (ferulic acid), were found to be the major phenolics in the asparagus stalks. Furthermore, the concentrations of O2 in asparagus stalks steadily increased during the storage. Deposition of lignin in harvested asparagus was significantly reduced by treating the stalks with GA3, 1-MCP or ethanol. The concentration of lignin in stalks treated with GA3, 1-MCP or ethanol was 32, 20 or 27% lower, respectively, than in controls 3 days after treatment. Treating stalks with ethylene enhanced lignin synthesis (p<0.05). The concentration of total phenol in stalks was also significantly reduced by GA3, 1-MCP and ethanol, but was enhanced by ethylene treatment. However, the concentration of active oxygen (O2−⋅) in stalks was significantly reduced by treatment with GA3, 1-MCP and ethanol, but was enhanced by treatment with ethylene. Our study show that postharvest treatment with 1-MCP, GA3 or ethanol may be applied to improve the quality of green asparagus.  相似文献   

10.
This study investigated the influence of different degrees of cross-linking of β-cyclodextrin-based nanosponges (β-CD-NSs) on the activity of the incorporated 1-methylcyclopropene (1-MCP) to extend the postharvest longevity of carnation cut flowers. The polymeric β-CD-NSs were synthesized from cyclodextrins at three varying reticulations, β-CD-NS 1:2, β-CD-NS 1:4, and β-CD-NS 1:8. These carriers were supplied to carry the nonvolatile formulations of 1-MCP at two different concentrations (0.25 and 0.5 μL L−1, ai) through stem and tissues of cut flowers of Dianthus caryophyllus L. ‘Idra di Muraglia’, both sprayed and in vase suspension. Treated cut flowers were compared to those receiving like concentrations of commercially prepared gaseous 1-MCP and to neat β-CD-NS 1:2, β-CD-NS 1:4, and β-CD-NS 1:8. Visual checks for symptoms of senescence alteration (VS), petal color variation, and endogenous ethylene production were registered daily. The β-CD-NS 1:2, β-CD-NS 1:4, and β-CD-NS 1:8 complexes favored decorative value maintenance in carnation cut flowers. In particular, the lowest suspended concentration (0.25 μL L−1) of the β-CD-NS 1:8 complex proved best for maintaining cut flower ornamental quality. β-CD-NS 1:8 treated flowers also appeared longer-lived than those treated with both doses of commercial gaseous 1-MCP. Data on petal color variation and endogenous ethylene production were strictly correlated with VS results. The potential for the formulated 1-MCP-loaded β-CD-NS suspension to induce prolonged vase life was demonstrated. Its use could yield benefits, such as a reduction in total dose and frequency of administration.  相似文献   

11.
Cut sweet pea flowers were put in vase water containing 200 mg l–1 8-hydroxyquinoline sulfate (HQS), and 100 g l–1 sucrose was added to the solution during the first 24 h (initial treatment), from the 24th h on (late treatment) or throughout the experimental period (continuous treatment). The vase life of the florets in the control (with no sucrose added), initial-, late-, and continuous-treatment groups were 2.8, 6.0, 5.0 and 8.0 days, respectively. Climacteric ethylene production of the florets was the earliest in the control group followed by the late-, initial- and continuous-treatment groups, in this order. The concentrations of glucose, fructose and s ucrose at the 2nd day and later were the highest in the continuous-treatment group followed by the initial-treatment, late-treatment and control group, in this order. Thus, the correlation between sugar concentrations in petals and vase life was positive, whereas that between the sugar concentrations and ethylene production was negative. These results suggest that sugar concentration in petals affects the vase life of cut sweet pea flowers through ethylene production.  相似文献   

12.
Stilbene synthases (STSs) are enzymes that play a critical role in the biosynthesis of stilbene, phytoalexins in a small number of unrelated plant species, and are induced by various biotic and abiotic stressors like pathogen attack, UV-irradiation or ozone exposure. To investigate the molecular basis for ozone-induced plant stress responses, we have examined the promoter of the grapevine resveratrol synthase (Vst1). In this report we summarize the influence of ozone on gene regulation. In transgenic tobacco a chimeric gene construct, containing the Vst1 promoter combined with the β-glucuronidase (GUS) reporter gene, is rapidly induced by ozone (0.1 μl·l−1, 12 h). The same construct is also strongly induced by ethylene (20 μl·l−1, 12 h). Promoter deletion analysis of the 5′ flanking sequence identified a positive regulatory element between −430 bp and −280 bp. This region contains ethylene-responsive enhancer elements, as well as an elicitor-responsive sequence in inverse orientation.  相似文献   

13.
Mango (Mangifera indica L. cv. Tainong) fruits were harvested at the green-mature stage in Hainan and air-freighted to the laboratory at Peking. The fruits were treated with either 1 μl l−1 1-MCP or 5 μl l−1 ethylene for 24 h and stored at 20°C for up to 16 days. 1-MCP maintained fruit firmness, whereas exogenous ethylene decreased fruit firmness. Exogenous ethylene accelerated the increase in ethylene and 1-aminocyclopropane-1-carboxylate (ACC) oxidase, whereas 1-MCP reduced both. Exogenous ethylene stimulated and 1-MCP inhibited the production of H2O2 of mango fruit during storage. Ascorbic acid was maintained at a high concentration in 1-MCP-treated fruit but was low in ethylene-treated fruit. 1-MCP inhibited activities of antioxidant enzymes including catalase, superoxide dismutase and ascorbate peroxidase. These results suggest that 1-MCP could play a positive role in regulating the activated oxygen metabolism balance. Baogang Wang and Jianhui Wang contributed equally to this work.  相似文献   

14.
15.
Ethylene production, as well as the expression of ethylene biosynthetic (Rh-ACS1-4 and Rh-ACO1) and receptor (Rh-ETR1-5) genes, was determined in five different floral tissues (sepals, petals, stamens, gynoecia, and receptacles) of cut rose (Rosa hybrida cv. Samantha upon treatment with ethylene or the ethylene inhibitor 1-methylcyclopropene (1-MCP). Ethylene-enhanced ethylene production occurred only in gynoecia, petals, and receptacles, with gynoecia showing the greatest enhancement in the early stage of ethylene treatment. However, 1-MCP did not suppress ethylene production in these three tissues. In sepals, ethylene production was highly decreased by ethylene treatment, and increased dramatically by 1-MCP. Ethylene production in stamens remained unchanged after ethylene or 1-MCP treatment. Induction of certain ethylene biosynthetic genes by ethylene in different floral tissues was positively correlated with the ethylene production, and this induction was also not suppressed by 1-MCP. The expression of Rh-ACS2 and Rh-ACS3 was quickly induced by ethylene in gynoecia, but neither Rh-ACS1 nor Rh-ACS4 was induced by ethylene in any of the five tissues. In addition, Rh-ACO1 was induced by ethylene in all floral tissues except sepals. The induced expression of ethylene receptor genes by ethylene was much faster in gynoecia than in petals, and the expression of Rh-ETR3 was strongly suppressed by 1-MCP in all floral tissues. These results indicate that ethylene biosynthesis in gynoecia is regulated developmentally, rather than autocatalytically. The response of rose flowers to ethylene occurs initially in gynoecia, and ethylene may regulate flower opening mainly through the Rh-ETR3 gene in gynoecia.  相似文献   

16.
Simultaneous assimilation of NH4 and NO3 by Gelidium nudifrons Gardner was observed in culture experiments of 4 possible combinations of NH4 and NO3. The combinations tested were those in which the concentration of both N sources were in the range of 3.0–4.0 μg-atN · l?1; both in the range of 0.5–1.0 μg-atN · l?1; one in the 3.0–4.0 μg-atN · l?1 range and the other in the 0.5–1.0 μg-atN · l?1 range; and, visa versa. The data suggest that the pools of both NH4 and NO3 are simultaneously available for algal assimilation.  相似文献   

17.
A number of organic molecules that appear to block the ethylene receptor have been discovered recently. For example, on irradiation with visible light, diazocyclopentadiene (DACP), gives rise to some potent but as yet unidentified inhibitor compounds. Some synthetic cyclopropenes have been shown to bind to the ethylene receptor and prevent the physiological action of ethylene for extended periods. Cyclopropene (CP). 1-methylcyclopropene (1-MCP) and 3,3-dimethylcyclopropene (3,3-DMCP) have been shown to prevent ethylene effects in a number of plants. As low a concentration as 0.5 nl l−1 of 1-MCP is sufficient to protect carnation ( Dianthus caryophyllus ) flowers for several days against ethylene, and 0.7 nl l−1 1-MCP or CP will prevent the ripening of banana ( Musa sapientum ) for 12 days at 24°C. Some plant organs require higher concentrations of these inhibitors. Complete inhibition of ethylene effects in pea seedlings requires treatment with 40 n1 1−1 of 1-MCP. These novel inhibitors appear to be suitable for many commercial applications including extending the vase life of cut flowers and the display life of potted plants. Since 1-MCP apparently is non-toxic at concentrations that are active, it may in future be available for regulating the ripening of fruits and preventing the deleterious effects of ethylene in vegetables.  相似文献   

18.
A comparison has been made of cyclopropene (CP), 1-methylcyclopropene (1-MCP), and 3,3-dimethyl-cyclopropene (3,3-DMCP) in their ability to protect plants against ethylene. In bananas, both CP and 1-MCP are effective around 0.5 nL L–1, and 3,3-DMCP was effective at 1 L L–1. Bananas treated with CP and 1-MCP again become sensitive to ethylene at 12 days and those treated with 3,3-DMCP at 7 days. Mature green tomatoes are protected by 5–7 nL L–1 of 1-MPC for 8 days at 25°C and tomatoes treated with 3,3-DMCP at 5–10 L L–1 are protected for 5 days. Carnation flowers are protected with CP or 1-MCP after exposure to 0.5 nL L–1 for 24 hours and by 1 L L–1 of 3,3-DMCP. The display life of Campanula flowers is increased from 3.3 to 5.4 days by 10 L L–1 of 3,3-DMCP and to 9 days by 20 nL L–1 of 1-MCP. Ethylene inhibition of pea seedlings is reduced by treatment with 1-MCP at 10 L L–1 of ethylene but as ethylene is increased to 3000 L L–1 growth inhibition increases. 3,3-DMCP treatment causes very little reduction of the ethylene effect even at very low concentrations.  相似文献   

19.
Using time-course, natural-light incubations, we assessed the rate of carbon uptake at a range of light intensities, the effect of supplemental additions of nitrogen (as NH4+ or urea) on light and dark carbon uptake, and the rates of uptake of NH4+ and urea by phytoplankton from Vineyard Sound, Massachusetts from February through August 1982. During the winter, photoinhibition was severe, becoming manifested shortly after the start of an incubation, whereas during the summer, there was little to no evidence of photoinhibition during the first several hours after the start of an incubation. At light levels which were neither photoinhibiting nor light limiting, rates of carbon uptake normalized per liter were high and approximately equal during winter and summer (22–23 μg C·l?1 · h?1), and low during spring (<10 μgC·l?1· h?1). In contrast, on a chlorophyll a basis, rates of carbon fixation were as high during spring (15–20μg C·μg Chl a?1·h?1), when concentrations of chlorophyll a were at the yearly minimum (<0.5 μg · l?1) as during the summer, when chlorophyll a concentrations were substantially higher (0.8–1.3 μg · l?1). Highest rates of NH4+ and urea uptake were observed during summer, and at no time of the year was there evidence for severe nitrogen deficiency, although moderate nitrogen nutritional stress was apparent during the summer months.  相似文献   

20.
Plum is a highly perishable fruit and postharvest fruit softening limits its shelf life. The aim of this work was to study the specific effects of 1-methylcyclopropene (1-MCP) treatment on physiological changes in ‘Zaohong’ plums. Plums were treated with 500 nL L−1 1-MCP at 20°C for 18 h followed by 20°C storage. The results showed that 1-MCP treatment significantly reduced endogenous ethylene production and the activities of ethylene biosynthetic enzymes’ (1-aminocyclopropane-1-carboxylic acid synthase, ACS and 1-aminocyclopropane-1-carboxylic acid oxidase, ACO) in plum fruit during storage when compared with untreated fruit. Although 1-MCP treatment inhibited ethylene production and 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation, it did not inhibit the accumulation of N-malonyl-ACC (MACC). Higher firmness was also found in 1-MCP-treated plums than in controls. During storage, superoxide anion (O2−·) and hydrogen peroxide (H2O2) levels decreased in 1-MCP-treated fruit. 1-MCP treatment also regulated superoxide dismutase (SOD) and catalase (CAT) activities during storage. Xylanase activity was upregulated while activities of polygalacturonase (PG), pectin methyl esterase (PME) and cellulase enzymes in the fruit were downregulated by 1-MCP treatment. In conclusion, 1-MCP might be a potent compound for extending both storage period and shelf life of ‘Zaohong’ plums by suppressing ethylene biosynthesis, regulating cell wall degradation enzymes and reducing fruit softening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号