共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A β-glucosidase that cleaves the biologically inactive hormone conjugates cytokinin-O- and kinetin-N3-glucosides is encoded
by the maize Zm-p60.1 gene. The expression of the Zm-p60.1 gene was analyzed by Northern blot analysis and in-situ hybridization. It was found that the expression levels of the Zm-p60.1-specific mRNA changed after pollination of carpellate inflorescences. The Zm-p60.1 cDNA was expressed in E. coli and antibodies were raised against this protein. An antibody was used to determine the tissue-specific localization of this
protein. By in situ immunolocalization experiments, this protein was found to be located in cell layers below the epidermis
and around the vascular bundles of the coleoptile. In the primary leaf, the Zm-p60.1 protein was detected in cells of the
outermost cell layer and around the vascular tissue. In floral tissue, Zm-p60.1 was present in the glumes, the carpels and
in the outer cell layer of the style. In coleoptiles, as determined by immuno-electronmicroscopy, the Zm-p60.1 protein was
located exclusively in the plastids.
Received: 11 August 1998 / Accepted: 30 December 1998 相似文献
4.
Touzet P 《Trends in plant science》2002,7(10):434; author reply 434
5.
Protein H1: a role for chromatin structure in the regulation of bacterial gene expression and virulence? 总被引:35,自引:3,他引:35
C. F. Higgins J. C. D. Hinton C. S. J. Hulton T. Owen-Hughes G. D. Pavitt A. Seirafi 《Molecular microbiology》1990,4(12):2007-2012
There has been a recent revival of interest in one of the most abundant Escherichia coli proteins, H1 (also called H-NS). This protein was first identified many years ago as a major component of the bacterial nucleoid, and has been characterized biochemically by several groups. However, no clear function for the protein emerged from these studies. Our thinking has been transformed by recent findings which complement the biochemistry with genetic data. Several mutations, selected over many years by virtue of their diverse effects on gene expression, have turned out to be allelic and to fall within the structural gene for H1. Bringing together the genetics and the biochemistry has demonstrated that the whole is worth more than the sum of the parts! These findings have far-reaching implications for the mechanisms by which gene expression is regulated and also, perhaps, for the control of bacterial virulence. 相似文献
6.
7.
Neural tube defects (NTDs), such as spina bifida (SB) or exencephaly, are common congenital malformations leading to infant mortality or severe disability. The etiology of NTDs is multifactorial with a strong genetic component. More than 70 NTD mouse models have been reported, suggesting the involvement of distinct pathogenetic mechanisms, including faulty cell death regulation. In this review, we focus on the contribution of functional genomics in elucidating the role of apoptosis and autophagy genes in neurodevelopment. On the basis of compared phenotypical analysis, here we discuss the relative importance of a tuned control of both apoptosome-mediated cell death and basal autophagy for regulating the correct morphogenesis and cell number in developing central nervous system (CNS). The pharmacological modulation of genes involved in these processes may thus represent a novel strategy for interfering with the occurrence of NTDs. 相似文献
8.
TRPM2 is a Ca2+-permeable non-selective cation channel that can be activated by adenosine dinucleotides, hydrogen peroxide, or intracellular Ca2+. The protein is expressed in a wide variety of cells, including neurons in the brain, immune cells, endocrine cells, and endothelial cells. This channel is also well expressed in β-cells in the pancreas. Insulin secretion from pancreatic β-cells is the primary mechanism by which the concentration of blood glucose is reduced. Thus, impairment of insulin secretion leads to hyperglycemia and eventually causes diabetes. Glucose is the principal stimulator of insulin secretion. The primary pathway involved in glucose-stimulated insulin secretion is the ATP-sensitive K+ (KATP) channel to voltage-gated Ca2+ channel (VGCC)-mediated pathway. Increases in the intracellular Ca2+ concentration are necessary for insulin secretion, but VGCC is not sufficient to explain [Ca2+]i increases in pancreatic β-cells and the resultant secretion of insulin. In this review, we focus on TRPM2 as a candidate for a [Ca2+]i modulator in pancreatic β-cells and its involvement in insulin secretion and development of diabetes. Although further analyses are needed to clarify the mechanism underlying TRPM2-mediated insulin secretion, TRPM2 could be a key player in the regulation of insulin secretion and could represent a new target for diabetes therapy. 相似文献
9.
《Autophagy》2013,9(2):280-282
Pancreatic β-cells play a key role in glucose homeostasis in mammals. Although large-scale protein synthesis and degradation occur in pancreatic β-cells, the mechanism underlying dynamic protein turnover in β-cells remains largely unknown. We found low-level constitutive autophagy in β-cells of C57BL/6 mice fed a standard diet; however, autophagy was markedly upregulated in mice fed a high-fat diet. β-cells of diabetic db/db mice contained large numbers of autophagosomes, compared with non-diabetic db/misty controls. The functional importance of autophagy was analyzed using β-cell-specific Atg7 knockout mice. Autophagy-deficient mice showed degeneration of β-cells and impaired glucose tolerance with reduced insulin secretion. While a high-fat diet stimulated β-cell autophagy in control mice, it induced a profound deterioration of glucose intolerance in β-cell autophagy-deficient mutants, partly because of the lack of a compensatory increase in β-cell mass. These results suggest that the degradation of unnecessary cellular components by autophagy is essential for maintenance of the architecture and function of β-cells. Autophagy also serves as a crucial element of stress responses to protect β-cells under insulin resistant states. Impairment of autophagic machinery could thus predispose individuals to type 2 diabetes. 相似文献
10.
11.
Angel L. Pey Tomas Majtan Jan P. Kraus 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(9):1453-1462
Human cystathionine β-synthase (hCBS) is a key enzyme of sulfur amino acid metabolism, controlling the commitment of homocysteine to the transsulfuration pathway and antioxidant defense. Mutations in hCBS cause inherited homocystinuria (HCU), a rare inborn error of metabolism characterized by accumulation of toxic homocysteine in blood and urine. hCBS is a complex multidomain and oligomeric protein whose activity and stability are independently regulated by the binding of S-adenosyl-methionine (SAM) to two different types of sites at its C-terminal regulatory domain. Here we study the role of surface electrostatics on the complex regulation and stability of hCBS using biophysical and biochemical procedures. We show that the kinetic stability of the catalytic and regulatory domains is significantly affected by the modulation of surface electrostatics through noticeable structural and energetic changes along their denaturation pathways. We also show that surface electrostatics strongly affect SAM binding properties to those sites responsible for either enzyme activation or kinetic stabilization. Our results provide new insight into the regulation of hCBS activity and stability in vivo with implications for understanding HCU as a conformational disease. We also lend experimental support to the role of electrostatic interactions in the recently proposed binding modes of SAM leading to hCBS activation and kinetic stabilization. 相似文献
12.
13.
X-ray diffraction, infrared and electron microscope studies of avian and reptilian keratins, and of stretched wool and hair, have played a central role in the development of models for the β-conformation in proteins. Both α- and β-keratins contain sequences that are predicted to adopt a β-conformation and these are believed to play an important part in the assembly of the filaments and in determining their mechanical properties. Interactions between the small β-sheets in keratins provide a simple mechanism through which shape and chemical complementarity can mediate the assembly of molecules into highly specific structures. Interacting β-sheets in crystalline proteins are often related to one another by diad symmetry and the data available on feather keratin suggest that the filament is assembled from dimers in which the β-sheets are related by a perpendicular diad. The most detailed model currently available is for feather and reptilian keratin but the presence of related β-structural forms in mammalian keratins is also noted. 相似文献
14.
15.
Mammalian lung development is a complex biological process, which is temporally and spatially regulated by growth factors, hormones, and extracellular matrix proteins. Abnormal changes of these molecules often lead to impaired lung development, and thus pulmonary diseases. Epithelial-mesenchymal interactions are crucial for fetal lung development. This paper reviews two interconnected pathways, pleiotrophin and Wnt/β-catenin, which are involved in fibroblast and epithelial cell communication during fetal lung development. 相似文献
16.
17.
Background
The complement component C3a induces degranulation in human mast cells via the activation of cell surface G protein coupled receptors (GPCR; C3aR). For most GPCRs, agonist-induced receptor phosphorylation leads to the recruitment of β-arrestin-1/β-arrestin-2; resulting in receptor desensitization and internalization. Activation of GPCRs also leads to ERK1/2 phosphorylation via two temporally distinct pathways; an early response that reflects G protein activation and a delayed response that is G protein independent but requires β-arrestins. The role of β-arrestins on C3aR activation/regulation in human mast cells, however, remains unknown.Methodology/Principal Findings
We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of β-arrestin-1 and β-arrrestin-2 in human mast cell lines, HMC-1 and LAD2 that endogenously expresses C3aR. Silencing β-arrestin-2 attenuated C3aR desensitization, blocked agonist-induced receptor internalization and rendered the cells responsive to C3a for enhanced NF-κB activity as well as chemokine generation. By contrast, silencing β-arrestin-1 had no effect on these responses but resulted in a significant decrease in C3a-induced mast cell degranulation. In shRNA control cells, C3a caused a transient ERK1/2 phosphorylation, which peaked at 5 min but disappeared by 10 min. Knockdown of β-arrestin-1, β-arrestin-2 or both enhanced the early response to C3a and rendered the cells responsive for ERK1/2 phosphorylation at later time points (10–30 min). Treatment of cells with pertussis toxin almost completely blocked both early and delayed C3a-induced ERK1/2 phosphorylation in β-arrestin1/2 knockdown cells.Conclusion/Significance
This study demonstrates distinct roles for β-arrestins-1 and β-arrestins-2 on C3aR desensitization, internalization, degranulation, NF-κB activation and chemokine generation in human mast cells. It also shows that both β-arrestin-1 and β-arrestin-2 play a novel and shared role in inhibiting G protein-dependent ERK1/2 phosphorylation. These findings reveal a new level of complexity for C3aR regulation by β-arrestins in human mast cells. 相似文献18.
19.
M. Vignesh T. Nepolean F. Hossain A. K. Singh H. S. Gupta 《Journal of plant biochemistry and biotechnology.》2013,22(4):401-408
β-carotene fortification of maize has emerged as a potential, long-term and sustainable approach to alleviate vitamin A deficiency in humans. Among the several genes involved in the carotenoid biosynthetic pathway, the 543 bp allele at crtRB1 3′TE (Transposable Element) gene (allele 1, without insertion) is associated with higher β-carotene accumulation. Estimation of β-carotene through high performance liquid chromatography showed that the CIMMYT genotypes with allele 1 had high kernel β-carotene content whereas the Indian inbreds with the same allele had low β-carotene content. To know the reason for this variation, allele 1 of crtRB1 3′TE gene was sequenced from a set of 11 diverse maize inbreds collected from CIMMYT and Indian germplasm. The sequence data of the allele 1 revealed the presence of 13 single nucleotide polymorphisms (SNPs) and 7 insertions and deletions (InDels). Exonic region had two SNPs, intronic region had one SNP and one InDel, whereas 3′-untranslated region (UTR) region of the gene showed 10 SNPs and 6 InDels. Among the several SNPs and InDels, SNP4, SNP13, InDel6 and InDel7 identified in the 3′-UTR region clearly differentiated the high and the low β-carotene genotypes. These 3′-UTR polymorphisms in allele 1 of the crtRB1 3′TE gene could be associated with the variation in kernel β-carotene accumulation by regulating the translation and stability of the mRNA. The SNPs and the InDels associated with higher level of β-carotene will be used as a gene-based marker(s) in selection of genotypes and to develop biofortified maize hybrids to alleviate vitamin A deficiency in humans. 相似文献