首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dioscorea spp. is an important food crop in many countries and the source of the phytochemical diosgenin. Efficient microtuber production could provide source materials for farm-planting stock, for food markets, and for the production of high-diosgenin-producing cultivars. The first step in this study was optimizing the plant growth regulators for plantlet production, followed by a study of the effects of sucrose concentration on microtuber induction and diosgenin production. Significantly, more shoots (3.5) were produced at 4.65 μM (1 mg L?1) kinetin (KIN), longer shoots (4.1 cm) were obtained at 2.46 μM (0.5 mg L?1) indole-3-butyric acid (IBA), and root number (3.9) was significantly higher at 5.38 μM (1 mg L?1) naphthalene acetic acid (NAA) than in other treatments. Increased sucrose concentrations in the optimized growth medium with 4.65 μM KIN and 5.38 μM NAA had significant effects on microtuber production (p < 0.01) and diosgenin content (p < 0.05). The most microtubers (6.2) were obtained with 100 g L?1 sucrose, while those on 80 g L?1 sucrose were the heaviest (0.7 g) and longest (7.4 mm). Microtubers formed in medium with 80 g L?1 sucrose had significantly higher diosgenin content (3.64% [w/w]) than those in other sucrose treatments (< 2%) and was similar to that of field-grown parent tubers (3.79%). This result indicates an important role for sucrose in both microtuber growth and diosgenin production. Medium containing 4.65 μM KIN and 5.38 μM NAA is recommended for plantlet production, and medium containing 80 g L?1 sucrose is recommended for microtuber and diosgenin production.  相似文献   

2.
3.
Two methods were used to produce yam minitubers from two different yam cultivars (cv. Krengle and cv. Kponan) using in vitro culture techniques. Method 1: Yam microtubers were first initiated in vitro and then transplanted to soil to generate plants from which minitubers were produced. Yam plants were obtained either by directly planting the microtubers to soil, or by inducing the germination of the microtubers using various chemical and physical treatments, before their transfer to soil. Method 2: Yam plantlets were first produced in vitro and then transplanted to soil for further development and tuber production. In both methods, the presence of jasmonic acid (JA) in the culture medium was found to be essential for yam tuberization, as well as for the germination of yam microtubers. In vitro production of yam microtubers was variety dependant. Compared to cv. Krengle, cv. Kponan responded better to microtuberization, and 2.5 μM JA was the optimum concentration resulting in 70 and 90% explants producing microtubers in the MS medium and the Tuberization medium (T-medium), respectively. Germination of the microtubers required treatment of JA at concentrations ranging from 1.0 to 2.5 μM. The overall length of the process to produce minitubers from microtubers took 32 weeks. In contrast, minitubers were obtained within 20 weeks when plantlets were directly transferred to soil. In this case, plantlets were first grown for 8 weeks on medium containing JA (0.1–1.0 μM) and 8% sucrose to initiate plant growth and rooting.  相似文献   

4.
Ryoo N  Yu C  Park CS  Baik MY  Park IM  Cho MH  Bhoo SH  An G  Hahn TR  Jeon JS 《Plant cell reports》2007,26(7):1083-1095
To elucidate the role of SSIIIa during starch synthesis in rice (Oryza sativa L.) endosperm, we characterized null mutants of this gene, generated by T-DNA insertions. Scanning electron microscope (SEM) analysis revealed that the starch granules in these mutants are smaller and rounder compared with the wild type controls, and that the mutant endosperm is characterized by a loosely packed central portion exhibiting a floury-like phenotype. Hence, the OsSSIIIa (Oryza sativa SSIIIa) mutations are referred to as white-core floury endosperm 5-1 (flo5-1) and flo5-2. Based upon their X-ray diffraction patterns, the crystallinity of the starch in the flo5 mutant endosperm is decreased compared with wild type. Through determination of the chain-length distribution of the mutant endosperm starch, we found that flo5-1 and flo5-2 mutants have reduced the content of long chains with degree of polymerization (DP) 30 or greater compared with the controls. This suggests that OsSSIIIa/Flo5 plays an important role in generating relatively long chains in rice endosperm. In addition, DP 6 to 8 and DP 16 to 20 appeared to be reduced in endosperm starch of flo5-1 and flo5-2, whereas DP 9 to 15 and DP 22 to 29 were increased in these mutants. By the use of differential scanning calorimetry (DSC), the gelatinization temperatures of endosperm starch were found to be 1–5°C lower than those of the control. We propose a distinct role for OsSSIIIa/Flo5 and the coordinated action of other SS isoforms during starch synthesis in the seed endosperm of rice.  相似文献   

5.
Green and white variegation in the Arabidopsis immutans (im) mutant is caused by a nuclear recessive gene. The green sectors contain cells with normal-appearing chloroplasts, while cells in the white sectors have photooxidized plastids lacking organized lamellae. In the present experiments, we found that the green im sectors have enhanced rates of carbon assimilation (monitored by 14CO2 uptake) and that there are corresponding increases in the activities of Rubisco and SPS, elevated starch and sucrose pool sizes, and an altered pattern of carbohydrate partitioning that favors sucrose over starch. We hypothesize that these increases are due, at least in part, to interactions with white sectors, perhaps to compensate for reductions in total source tissue. Consistent with this idea, the im white sectors accumulate low levels of sucrose and acid invertase activities are markedly increased in the white versus green cells. This suggests that there is a sucrose gradient between the green and white sectors, and that sucrose is transported from the green to white cells in response to sink demand. The expression of photosynthetic genes is not appreciably altered in the green im sectors versus wild type, but rather there is an up-regulation of genes involved in defense against oxidative stress and down-regulation of genes involved in cell wall biosynthesis. We postulate that changes in photosynthesis in the im green cells are driven by a need for photoprotection (especially early in chloroplast biogenesis) and due to source-sink interactions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The aim of this work was to evaluate the influence of elevating the cytosolic activity of phosphoglucomutase (PGM; EC 5.4.2.2) on photosynthesis, growth and heterotrophic metabolism. Here we describe the generation of novel transgenic plants expressing an Escherichia coli phosphoglucomutase (EcPGM) under the control of the 35S promoter. These lines were characterised by an accumulation of leaf sucrose, despite displaying no alterations in photosynthetic carbon partitioning, and a reduced tuber starch content. Determinations of the levels of a wide range of other metabolites revealed dramatic reductions in maltose and other sugars in leaves of the transformants, as well as a modification of the pattern of organic and amino acid content in tubers of these lines. Intriguingly, the transgenics also displayed a dramatically delayed rate of sprouting and significantly enhanced rate of respiration, however, it is important to note that the severity of these traits did not always correlate with the level of transgene expression. These results are discussed in the context of current understanding of the control of respiration and the breaking of tuber dormancy.  相似文献   

7.
The gene encoding sucrose phosphorylase (742sp) in Leuconostoc mesenteroides NRRL B-742 was cloned and expressed in Escherichia coli. The nucleotide sequence of the transformed 742sp comprised an ORF of 1,458 bp giving a protein with calculated molecular mass of 55.3 kDa. 742SPase contains a C-terminal amino acid sequence that is significantly different from those of other Leu. mesenteroides SPases. The purified 742SPase had a specific activity of 1.8 U/mg with a K m of 3 mM with sucrose as a substrate; optimum activity was at 37°C and pH 6.7. The purified 742SPase transferred the glucosyl moiety of sucrose to cytosine monophosphate (CMP). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
A chalcone synthase (CHS)-like gene, MpCHSLK1, was isolated from liverwort, Marchantia paleacea var. diptera. Phylogenetic analysis revealed that MpCHSLK1 is closely related to stilbene synthase of the whisk fern, Psilotum nudum. Southern blot analysis using an MpCHSLK1 probe revealed that the gene belongs to a small gene family. Northern blot analysis indicated that CHS-like genes were expressed in either the mother plants or photoautotrophic cells. In photoautotrophic cells, the CHS-like genes were expressed light-dependently, and this expression was completely inhibited by the photosynthetic electron transport inhibitor, DCMU.Abbreviations CHS Chalcone synthase - DCMU 3-(3,4-Dichlorophenyl)-1-1-dimethylurea - POR Protochlorophyllide oxidoreductase - STS Stilbene synthase  相似文献   

9.
Summary  A new species of Dioscorea from Morondava prefecture in Western Madagascar is described. Dioscorea bako Wilkin differs from D. alatipes Burkill & H. Perr. by its usually shallowly and irregularly lobed leaf margins, broader leaf blade (grey-green below), longer petiole and the broadly cuneate area where the petiole is inserted onto the leaf blade in the basal sinus. It is pubescent, especially densely on young shoots and inflorescences. It is endemic to Morondava Préfecture and is endangered under IUCN Red List category criteria (IUCN 2001). The unusual morphological features of its inflorescences, some of which are shared with D. alatipes are discussed. Dioscorea bako is a favoured food source for people of the Menabe region and is reported by them to be increasingly hard to find. Immediate conservation measures are necessary to ensure that it remains extant and, in the medium to long term, research should be undertaken to guide its sustainable utilisation.  相似文献   

10.
11.
Lewis spider mite Eotetranychus lewisi (McGregor) is the most important pest in peach orchards, Prunus persica (L.) (Batsch), in North-Central Mexico. In autumn 2003 and spring 2004, two glasshouse experiments were carried out to assess the influence of that mite on the concentration of total soluble sugars and starch in leaves, bark and roots of ‘diamante mejorado’ peach trees. Apical leaves of peach trees were inoculated with three mite densities per leaf: (A) 10–20, (B) 21–40, (C) 41–80; a mite-free control was added. In 2003, at 81 days after infestation (DAI), cumulative mite-days per leaf (CMD) were 153, 1313, 2844 and 4771 in control and treatments (A), (B) and (C), respectively. In the same order, these CMD caused reductions in total soluble sugars (TSS): in leaves, 45, 50 and 61%; in bark, 9, 20 and 33%; in roots, 8, 20 and 26%. Reductions of starch concentration in leaves were 17, 43 and 56%; in bark, 25, 55 and 32%; in roots, 17, 22 and 32%. In 2004, at 77 DAI and 57, 1043, 2426 and 3996 CMD for control and treatments (A), (B) and (C), respectively, resulting reductions of TSS were: in leaves, 3, 7 and 15%; in bark, 0.8, 3 and 5%; in roots, 57, 60 and 78%, whereas reductions in starch concentration were: in leaves, 30, 34 and 44%; in bark, 18, 24 and 41%; in roots, 17, 47 and 48%. The higher reductions in roots found in 2004 are attributed to cumulative injury affecting food reserves.  相似文献   

12.
It is generally accepted that sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (AGPase), soluble starch synthase (SSS), granule-bound starch synthases (GBSS) and starch branching enzyme (SBE) play a key role in starch synthesis in wheat grains. Starch synthesis in wheat grains is influenced by genotype and environment. However, what is not known is the degree of variation in enzyme activity during starch accumulation of wheat cultivars differing in kernel types. The present study was carried out to characterize the changing activities of key enzymes during grain filling in two kernel type winter wheat cultivars. Results showed that starch accumulation rate (SAR) and activities of SuSy, AGPase, SSS, GBSS and SBE in large kernel types were significantly higher than those in small kernel types. The soil water deficit experienced during the course of the experiment led to an increase at early grain-filling period and decrease during late grain-filling, respectively, in SAR and activities of key enzymes involved in starch synthesis, especially SuSy, AGPase, SSS, and SBE. Water deficit enhanced grain starch accumulation in small kernel types. It suggests that rainfed treatment increase physiological activities during early grain-filling and promote starch accumulation in small kernel types. The simulation with Richards’ equation showed that it was accumulation duration and SAR that determined the starch accumulation in large kernel types. Compared with small kernel types, plants of large kernel types maintained longer filling duration, higher SAR and greater activities of related enzymes during mid and late grain-filling. These observations suggest stronger sink activities in large kernel types at a later stage of development. Consequently, large kernel types have advantages over the small kernel types in terms of the amount of starch accumulation at mid and late stage, but are sensitive to water deficit.  相似文献   

13.
North American oak species, with their characteristic strong episodic seasonal shoot growth, are highly problematic for clonal micropropagation, resulting in the inability to achieve a stabilized shoot multiplication stage. The potential for initiating and proliferating shoot cultures derived from Quercus alba, Q. bicolor and Q. rubra explants was investigated, and a micropropagation method for these species was developed. Branch segments from 6 to 7-year-old trees were forced-flushed and the forced shoots were used as source of explants for culture initiation. A consistent shoot multiplication stage was achieved, in 13 of the 15 genotypes established in vitro, although marked differences occurred in explants from different genotypes/species. The control of efficient shoot multiplication involved the culture of decapitated shoots in a stressful horizontal position on cytokinin-containing medium with a sequence of transfers within a 6-week subculture cycle, which was beneficial to overcoming the episodic character of shoot growth. During each subculture cycle, the horizontally placed explants were cultured on media containing 0.2 mg l−1 benzyladenine (BA) for 2 weeks with two successive transfers (2 weeks each) to fresh medium with 0.1 mg l−1 BA, giving a 6-week subculture cycle. The general appearance and vigor of Q. alba and Q. bicolor shoot cultures were improved by the inclusion of both 0.1 mg l−1 BA and 0.5 mg l−1 zeatin in the medium used for the second transfer within the 6-week subculture cycle. Addition of AgNO3 (3 mg l−1) to the shoot proliferation medium of Q. rubra had a significant positive effect on shoot development pattern by reducing deleterious symptoms, including shoot tip necrosis and early senescence of leaves. The three species showed acceptable in vitro rooting rates by culturing microcuttings in medium containing 25 mg l−1 indolebutyric acid for 48 h with subsequent transfer to auxin-free medium supplemented with 0.4% activated charcoal. Although an initial 5-day dark period generally improved the rooting response, it was detrimental to the quality of regenerated plantlets. However, activated charcoal stimulated not only the rooting frequencies, but it also enhanced plant quality, as evidenced by root, shoot and leaf growth.  相似文献   

14.
A strictly anaerobic bacterium, strain OX39, was isolated with o-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. Apart from o-xylene, strain OX39 grew on m-xylene and toluene and all three substrates were oxidized completely to CO2. Induction experiments indicated that o-xylene, m-xylene, and toluene degradation were initiated by different specific enzymes. Methylbenzylsuccinate was identified in supernatants of cultures grown on o-xylene and m-xylene, and benzylsuccinate was detected in supernatants of toluene-grown cells, thus indicating that degradation was initiated in all three cases by fumarate addition to the methyl group. Strain OX39 was sensitive towards sulfide and depended on Fe(II) in the medium as a scavenger of the produced sulfide. Analysis of the PCR-amplified 16S rRNA gene revealed that strain OX39 affiliates with the gram-positive endospore-forming sulfate reducers of the genus Desulfotomaculum and is the first hydrocarbon-oxidizing bacterium in this genus.  相似文献   

15.
Hao da C  Yang L  Huang B 《Genetica》2009,135(2):123-135
Evolutionary patterns of sequence divergence were analyzed in genes from the conifer genus Taxus (yew), encoding paclitaxel biosynthetic enzymes taxadiene synthase (TS) and 10-deacetylbaccatin III-10β-O-acetyltransferase (DBAT). N-terminal fragments of TS, full-length DBAT and internal transcribed spacer (ITS) were amplified from 15 closely related Taxus species and sequenced. Premature stop codons were not found in TS and DBAT sequences. Codon usage bias was not found, suggesting that synonymous mutations are selectively neutral. TS and DBAT gene trees are not consistent with the ITS tree, where species formed monophyletic clades. In fact, for both genes, alleles were sometimes shared across species and parallel amino acid substitutions were identified. While both TS and DBAT are, overall, under purifying selection, we identified a number of amino acids of TS under positive selection based on inference using maximum likelihood models. Positively selected amino acids in the N-terminal region of TS suggest that this region might be more important for enzyme function than previously thought. Moreover, we identify lineages with significantly elevated rates of amino acid substitution using a genetic algorithm. These findings demonstrate that the pattern of adaptive paclitaxel biosynthetic enzyme evolution can be documented between closely related Taxus species, where species-specific taxane metabolism has evolved recently.  相似文献   

16.
17.
In many resprouting plants, carbohydrates are stored as starch in roots and will be mobilized to support above-ground tissue regrowth after shoot damage. Our objective was to determine how activities of starch hydrolytic enzymes change damage-induced starch mobilization in Caragana korshinskii roots after above-ground tissue loss. Zero percent (control), 30% (30% RSL), 60% (60% RSL) of main shoot length, and 25% (25% RSN), 50% (50% RSN), and 100% (100% RSN) of main shoot number were removed. Compared with control plants, clipping accelerated the reduction of starch in the roots, increased sucrose flux per flower per hour and nectar production per flower per day in 30% RSL, 60% RSL, 25% RSN, and 50% RSN treatments, and improved vegetative growth in 100% RSN treatment. All treatments had similar total nonstructural carbohydrate (TNC) concentrations in leaves, shoots, and stems with the exception of 100% RSN with higher TNC concentration in shoots. Both α-, and β-amylase activities were enhanced by clipping, the former being more strongly correlated with starch degradation in the roots than the latter. The other two possible starch-breaking enzymes, α-glucosidase, and starch phosphorylase showed no significant differences in the activities between treatments. The results suggest that starch degradation in the roots of C. korshinskii was regulated by α-amylase activity and more mobilized starch was used to support vegetative growth in 100% RSN treatment and support sexual reproduction followed by other clipping treatments.  相似文献   

18.
An artificial fusion protein of Arthrobacter oxydans dextranase and Klebsiella pneumoniae α-amylase was constructed and expressed in Escherichia coli. Most of the expressed protein existed as an insoluble fraction, which was solubilized with urea. The purified fusion enzyme electrophoretically migrated as a single protein band; M = 137 kDa, and exhibited activities of both dextranase (10.8 U mg−1) and amylase (7.1 U mg−1), which were lower than that of reference dextranase (13.3 U mg−1) and α-amylase (103 U mg−1). The fusion enzyme displayed bifunctional enzyme activity at pH 5–7 at 37°C. These attributes potentially make the fusion enzyme more convenient for use in sugar processing than a two-enzyme system.  相似文献   

19.
A novel stilbene synthase gene (STS), cloned from Chinese wild Vitis pseudoreticulata (W. T. Wang) and responsible for synthesis of the phytoalexin resveratrol in grapevine, was successfully transferred into V. vinifera L. cv. Thompson Seedless via Agrobacterium tumefaciens-mediated transformation. Using transformation procedures developed in the present study, 72% GFP-positive germinated embryos were produced with about 38% of transformed embryos regenerated into normal plantlets. Integration of the STS gene into the transgenic plants was verified by PCR and Southern blot analysis. Expression of the STS gene was detected by high performance liquid chromatography (HPLC), which showed that the resveratrol concentration in the transgenic plants was 5.5 times higher than that in non-transformed control plants. Chaohong Fan and Ni Pu contributed equally to this work.  相似文献   

20.
Patle S  Lal B 《Biotechnology letters》2007,29(12):1839-1843
Acid, alkaline and enzymatic hydrolysis of agricultural crop wastes were compared for yields of total reducing sugars with the hydrolysates being evaluated for ethanol production using a mixed culture of Zymomonas mobilis and Candida tropicalis. Acid hydrolysis of fruit and vegetable residues gave 49–84 g reducing sugars l−1 and 29–32 g ethanol l−1 was then obtained. Alkaline hydrolysis did not give significant amount of reducing sugars. Enzymatic hydrolysis of fruit and vegetable residues yielded 36–123 g reducing sugars l−1 and 11–54 g ethanol l−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号