首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previously unknown larvae and poorly studied metamorphic and postmetamorphic stages of development of peacock flounder Bothus lunatus (Bothidae) with a length of 5.4 to 39.5 mm from the western and central tropical waters of the Atlantic Ocean are described, and their identification is substantiated. Small-and medium-sized larvae of this species (with a length of nearly 10 mm) at stages of pre-and postflexion, like all larvae of the genus Bothus at the corresponding stages of development, have a strongly flattened from the sides, moderately deep, and almost pigment-free transparent body; bear a long anterior ray in the dorsal fin; and have single melanophores in the end part of the body. They differ from larvae of other Atlantic species of the genus known at early stages of development in the shape of the anterior head profile, namely in the presence of a deep notch in front of the eyes. With growth, their body assumes a rounded shape. During metamorphosis of larval B. lunatus, the right eye shifts to the left side of the head through a slit formed during the separation of the origin of dorsal fin base from the cranium. This specific feature distinguishes them from larvae of the remaining species of the genus in which, during metamorphosis, the right eye passes to the left side through the hole in the head.  相似文献   

2.
Anguillid freshwater eels show remarkable life histories. In the Atlantic, the European eel (Anguilla anguilla) and American eel (Anguilla rostrata) undertake extensive migrations to spawn in the oceanic Sargasso Sea, and subsequently the offspring drift to foraging areas in Europe and North America, first as leaf-like leptocephali larvae that later metamorphose into glass eels. Since recruitment of European and American glass eels has declined drastically during past decades, there is a strong demand for further understanding of the early, oceanic phase of their life cycle. Consequently, during a field expedition to the eel spawning sites in the Sargasso Sea, we carried out a wide range of dedicated bio-physical studies across areas of eel larval distribution. Our findings suggest a key role of oceanic frontal processes, retaining eel larvae within a zone of enhanced feeding conditions and steering their drift. The majority of the more westerly distributed American eel larvae are likely to follow a westerly/northerly drift route entrained in the Antilles/Florida Currents. European eel larvae are generally believed to initially follow the same route, but their more easterly distribution close to the eastward flowing Subtropical Counter Current indicates that these larvae could follow a shorter, eastward route towards the Azores and Europe. The findings emphasize the significance of oceanic physical–biological linkages in the life-cycle completion of Atlantic eels.  相似文献   

3.
European eels (Anguilla anguilla) undertake spawning migrations of more than 5000 km from continental Europe and North Africa to frontal zones in the Sargasso Sea. Subsequently, the larval offspring are advected by large-scale eastward ocean currents towards continental waters. However, the Sargasso Sea is oligotrophic, with generally low plankton biomass, and the feeding biology of eel larvae has so far remained a mystery, hampering understanding of this peculiar life history. DNA barcoding of gut contents of 61 genetically identified A. anguilla larvae caught in the Sargasso Sea showed that even the smallest larvae feed on a striking variety of plankton organisms, and that gelatinous zooplankton is of fundamental dietary importance. Hence, the specific plankton composition seems essential for eel larval feeding and growth, suggesting a linkage between eel survival and regional plankton productivity. These novel insights into the prey of Atlantic eels may furthermore facilitate eel larval rearing in aquaculture, which ultimately may replace the unsustainable use of wild-caught glass eels.  相似文献   

4.
On the basis of ichthyoplankton surveys performed in July 2002 and June 2004–2005 in Chupa Estuary and adjacent waters of Kandalaksha Bay, species composition and distribution of eggs and larvae of fish were studied. Early stages of development of seven fish species were found in the composition of ichthyoplankton. The bulk of abundance of ichthyoplankton was formed of Clupea pallasii marisalbi larvae. It was shown that the sites of aggregation of larval C. pallasii marisalbi from June to July are constant and located in the central and preestuarine areas of Chupa Estuary. Possible routes of their passive migrations within Chupa Estuary and the adjacent water area of Kandalaksha Bay are considered. It is suggested that the drift of larvae beyond the estuary proceeds slowly, and after hatching they can long stay in the estuary concentrating in its central and preestuarine areas.  相似文献   

5.
Many species endemic to deep-sea methane seeps have broad geographical distributions, suggesting that they produce larvae with at least episodic long-distance dispersal. Cold-seep communities on both sides of the Atlantic share species or species complexes, yet larval dispersal across the Atlantic is expected to take prohibitively long at adult depths. Here, we provide direct evidence that the long-lived larvae of two cold-seep molluscs migrate hundreds of metres above the ocean floor, allowing them to take advantage of faster surface currents that may facilitate long-distance dispersal. We collected larvae of the ubiquitous seep mussel “Bathymodiolus” childressi and an associated gastropod, Bathynerita naticoidea, using remote-control plankton nets towed in the euphotic zone of the Gulf of Mexico. The timing of collections suggested that the larvae might disperse in the water column for more than a year, where they feed and grow to more than triple their original sizes. Ontogenetic vertical migration during a long larval life suggests teleplanic dispersal, a plausible explanation for the amphi-Atlantic distribution of “B.” mauritanicus and the broad western Atlantic distribution of B. naticoidea. These are the first empirical data to demonstrate a biological mechanism that might explain the genetic similarities between eastern and western Atlantic seep fauna.  相似文献   

6.
With the increase in global oceanic trade the establishment of non-indigenous marine organisms has become a major environmental and economic problem worldwide. Recently, the Atlantic rock crab (Cancer irroratus) was reported in Icelandic waters, Eastern North Atlantic. This is the first record of this relatively large crab species outside its natural range, i.e. the east coast of North America. The crab was most likely transferred to Iceland as larvae in ballast water and has successfully established a reproducing population in Icelandic waters. The species is distributed along the southwestern- and western-coast of Iceland. Adult specimens are now common in Faxaflói Bay, Southwest Iceland, but with sporadic occurrences in western and northwestern Icelandic waters. The green crab (Carcinus maenas) and the spider crab (Hyas araneus) are the only native brachyuran decapod species commonly found in its new habitat, but despite its recent colonization the rock crab was the most abundant brachyuran in the areas studied in southwest Iceland. Egg bearing rock crab and green crab females were found from June to October, while egg bearing spider crab females were seen from July to December. In Southwest Iceland both rock crab and green crab larvae were abundant in mid-summer but rare in both spring and autumn, which is opposite of what was observed for the spider crab. The size and abundance of adult crabs, their reproductive conditions, and occurrence of all larval stages, indicate that the Atlantic rock crab has successfully colonized Iceland.  相似文献   

7.
Loggerhead sea turtles (Caretta caretta) originating from the Western Atlantic carry out one of the largest marine migrations, reaching the eastern Atlantic and Mediterranean Sea. It has been proposed that this transatlantic journey is simply a consequence of drifting, with the lack of a target destination and a passive dispersal with oceanic currents. This predicts that the size of the source populations and geographic distance to the feeding grounds should play important roles in defining stock composition in the eastern Atlantic and Mediterranean Sea. Under this scenario, near pelagic stocks would have no genetic structure, and would be composed of similar cohorts from regional rookeries. To address this question, we sampled individuals from one important eastern Atlantic feeding ground, the Canary Islands, and sequenced a fragment of the mitochondrial DNA control region. We compared the composition of this feeding stock with published data of other proximal areas: Madeira, Azores and Andalusia. “Rookery-centric” mixed stock analysis showed that the distribution of loggerhead sea turtles along the eastern Atlantic feeding grounds was in latitudinal accordance to their natal origin: loggerhead turtles from Florida were significantly more abundant in Azores (30%) than in Canary Islands (13%), while those from Mexico had a poor representation in Azores (13%) but were more prevalent in Canary Islands (34%). Also, genetic stability in temporal and size analyses of the Canary Island aggregation was found, showing a long period of residency. These results indicate a non-random distribution of loggerhead juveniles in oceanic foraging grounds. We discuss possible explanations to this latitudinal variation.  相似文献   

8.
The spawning areas of the Atlantic freshwater eels were discovered about a century ago by the Danish scientist Johannes Schmidt who after years of searching found newly hatched larvae of the European eel, Anguilla anguilla, and the American eel, Anguilla rostrata, in the southern Sargasso Sea. The discovery showed that anguillid eels migrate thousands of kilometers to offshore spawning areas for reproduction, and that their larvae, called leptocephali, are transported equally long distances by ocean currents to their continental recruitment areas. The spawning sites were found to be related to oceanographic conditions several decades later by German and American surveys from 1979 to 1989 and by a Danish survey in 2007 and a German survey in 2011. All these later surveys showed that spawning occurred within a restricted latitudinal range, between temperature fronts within the Subtropical Convergence Zone of the Sargasso Sea. New data and re‐examinations of Schmidt's data confirmed his original conclusions about the two species having some overlap in spawning areas. Although there have been additional collections of leptocephali in various parts of the North Atlantic, and both otolith research and transport modelling studies have subsequently been carried out, there is still a range of unresolved questions about the routes of larval transport and durations of migration. This paper reviews the history and basic findings of surveys for anguillid leptocephali in the North Atlantic and analyses a new comprehensive database that includes 22612 A. anguilla and 9634 A. rostrata leptocephali, which provides a detailed view of the spatial and temporal distributions and size of the larvae across the Atlantic basin and in the Mediterranean Sea. The differences in distributions, maximum sizes, and growth rates of the two species of larvae are likely linked to the contrasting migration distances to their recruitment areas on each side of the basin. Anguilla rostrata leptocephali originate from a more western spawning area, grow faster, and metamorphose at smaller sizes of <70 mm than the larvae of A. anguilla, which mostly are spawned further east and can reach sizes of almost 90 mm. The larvae of A. rostrata spread west and northwest from the spawning area as they grow larger, with some being present in the western Caribbean and eastern Gulf of Mexico. Larvae of A. anguilla appear to be able to reach Europe by entering the Gulf Stream system or by being entrained into frontal countercurrents that transport them directly northeastward. The larval duration of A. anguilla is suggested to be quite variable, but gaps in sampling effort prevent firm conclusions. Although knowledge about larval behaviour is lacking, some influences of directional swimming are implicated by the temporal distributions of the largest larvae. Ocean–atmosphere changes have been hypothesized to affect the survival of the larvae and cause reduced recruitment, so even after about a century following the discovery of their spawning areas, mysteries still remain about the marine life histories of the Atlantic eels.  相似文献   

9.
During embryogenesis, organisms with lecithotrophic indirect development usually accumulate large quantities of energetic reserves in the form of yolk that are necessary for larval survival. Since all sponges have lecithotrophic development, yolk formation is an ineludible step of their embryogenesis. Sponge yolk platelets have a wide range of morphological forms, from entirely lipid or protein platelets to a combined platelet showing both lipids and proteins and even glycogen. So far, there are no comparative studies on the nature and content of yolk in congeneric species of sponges inhabiting contrasting environments, which could have putative effects on the larval adaptation to environmental conditions. Here, we have taken advantage of the worldwide distribution of the sponge genus Mycale, in order to compare the embryogenesis and yolk formation in two species inhabiting contrasting latitudinal areas: M. acerata from Antarctic waters and M. laevis from the Caribbean. We have compared their brooded embryos and larvae using scanning and transmission electron microscopy, and calculated their energetic signatures based on the nature of their yolk. While the general morphological feature of embryos and larvae of both species were very similar, the main difference resided in the yolk nature. The Antarctic species, M. acerata, showed exclusively lipid yolk, whereas the Caribbean species, M. laevis, showed combined platelets of lipids and proteins and less frequently protein yolk platelets. The larvae of M. acerata were estimated to possess a two-fold energetic signature compared to that of M. laevis, which may have important ecological implications for their survival and for maintaining large population densities in the cold waters of the Southern Ocean.  相似文献   

10.
Summary

There is a latitudinal gradient in the species richness of Decapoda with pelagic larvae. For example, only two species of Brachyura are found around Svalbard, 54 species are known from the English Channel and ~100 from the Atlantic coast of the Iberian peninsula. The distributions of many species are limited by effects of temperature. Intermoult times of larvae are inversely related to temperature. In the field the size of larvae is inversely related to temperature, the relationship tending to increase in significance in successive larval stages. The timing of the seasonal occurrence of larvae of decapod species in the plankton is also related to temperature, to a greater extent than are seasonal cycles of the holoplankton. These effects of temperature on larval development influence the biomass and production of the larvae in the plankton. Some potential effects of climate change on the distributions and dynamics of planktonic larvae of decapods and consequent changes in their diversity, biomass and production can be predicted insofar as temperature is a limiting factor.  相似文献   

11.
Since their recent introductions into Florida waters, three sessile invertebrates [Perna viridis (Asian green mussel), Mytella charruana (charru mussel) and Megabalanus coccopoma (pink titan acorn barnacle)] have expanded their range along the Atlantic coast in estuarine waters. Little research has been done to understand how these nonnative species interact with the ecologically and economically important eastern oyster Crassostrea virginica. To assess the potential effects of P. viridis, M. charruana and M. coccopoma on C. virginica, the following questions were addressed in manipulative experiments. (1) Does the presence of nonnative species decrease oyster larval settlement? (2) Do oyster larvae avoid settling on nonnative species? (3) Do nonnative species decrease survival of juvenile oysters (spat)? (4) Do nonnative species hinder spat growth? We included two controls: absence of nonnative species and presence of the native mussel Geukensia demissa. The nonnative species influenced settlement, growth and survival of C. virginica in different ways. M. coccopoma and P. viridis negatively influenced larval settlement, whereas M. charruana had no influence on the total number of settled larvae. Oyster larvae avoided settling on all three nonnative species and the native G. demissa. Both nonnative mussels negatively affected survival of juvenile oysters but only M. charruana also reduced spat growth. The native mussel, G. demissa, had no negative impacts on total settlement, survival and growth of C. virginica; in fact, it increased larval settlement in some trials. These three nonnative species should be classified as invasive because all had negative effects on native C. virginica.  相似文献   

12.
Hemigrapsus sanguineus is an invasive species of crab (family: Grapsidae) in the north Atlantic basin. The species has spread rapidly since it was first discovered in North America in the late 1980s; however, the mechanisms of this range expansion remain unclear. This study attempts to predict the vertical distribution and, thus, ultimate transport of H. sanguineus larvae by examining larval responses to gravity and pressure. Geotaxis was determined by measuring the response of individual larvae to gravity in the absence of other tactic stimuli. Barokinesis was determined by measuring changes in swimming speed of larvae upon step-wise changes in pressure. Geotactic response of the larvae changes ontogenetically; early stage larvae are negatively geotactic (orienting towards the surface), while late stage larvae are positively geotactic (orienting towards the bottom). Larvae show a response to pressure that would aid in depth regulation. Early-stage larvae increase activity upon a change in pressure and orient their movement to gravity. However, the larvae show a relatively low sensitivity to pressure change. The evidence predicts an export-and-return model of larval transport, similar to that of Uca spp. in the Middle Atlantic Bight. This model supports the hypothesis that H. sanguineus larvae have the potential for high dispersal and will continue to invade new regions through larval transport.  相似文献   

13.
A small irrigation diversion dam near Chiloquin, Oregon, was removed and replaced with a pump station to improve fish passage for Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) entering the Sprague River on their spawning migrations. During the developmental phase of the pump station, a need was identified to better understand the larval drift characteristics of these endangered catostomids in order to reduce entrainment into the irrigation system. The spatial, seasonal, and diel distribution of drifting larvae was measured during the 2004 spawning season at two proposed sites on the Williamson River where the pump station could be located. Larval drift for both species coincided with the irrigation season making them subject to entrainment into the irrigation system. Drift occurred almost exclusively at night with larvae entering the drift at sunset and exiting the drift at sunrise. Nighttime larval densities were concentrated near the surface and at midchannel at both sites. Densities were generally greater on the side of mid-channel with greater flow. During early morning sampling we detected a general shift in larval drift from surface to subsurface drift. We also observed an increase in larval densities towards the shore opposite from the proposed pump station at the upper site whereas larval densities remained high at midchannel at the lower site. During daytime sampling, the few larvae that were collected were distributed throughout the water column at both pump sites. This study found that larvae drifting during all time periods were generally distributed further across the cross section, deeper in the water column, and closer to where the proposed water withdrawal structure would be built at the downstream site when compared to the upstream site. Recommendations were provided to locate the withdrawal facility at the upstream site and operate it in a manner such that larval entrainment would likely be minimized.  相似文献   

14.
Nematodes belonging to the genus Hysterothylacium (family Raphidascarididae) infect various species of marine fish in both the larval and adult stages. Humans can be accidentally infected upon eating infected seafood. In spite of their importance, relatively little is known of their occurrence and systematics in Australia. An examination of various species of marine teleosts in Australian waters revealed a high prevalence of Hysterothylacium larval types. In the present study, seven previously undescribed Hysterothylacium larval morphotypes (V to VII and IX to XII) were discovered. In total we found 10 different morphotypes and we genetically characterised nine morphotypes identified. A morphological dichotomous identification key has been established to differentiate these morphotypes. Since some larvae of Hysterothylacium from marine fishes cannot be differentiated morphologically from other nematode larvae, such as Paraheterotyphlum, Heterotyphlum, Iheringascaris and Lapetascaris, the first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA) of these larvae were characterised to confirm their taxonomic status. This genetic characterisation implied that some distinct morphotypes belong to different developmental stages of the same species. In addition, it revealed that some morphotypes can comprise distinct genotypes. No match was found between ITS-1 and ITS-2 sequences obtained from larvae in the present study and those from adults available in the GenBank, highlighting the lack of knowledge on occurrence of adult nematodes infecting Australian fish.  相似文献   

15.
Summary Ichthyoplankton was sampled from the Antarctic Peninsula area of the South Polar Ocean in early winter (May and June 1986). A total of 153 eggs from two species and 1368 larvae or juvenile stages from 12 species were obtained. These included pelagic species, and demersal species with a long pelagic larval or juvenile phase. Most abundant were larvae of Pleuragramma antarcticum and Notothenia kempi, and eggs of Notothenia neglecta. The distribution of notothenioid and paralepidid larvae was apparently unaffected by ice cover, whereas myctophid larvae were confined to ice-free waters. Areas where newly hatched Chionodraco hamatus occurred coincided with dense aggregations of Euphausia superba (Krill) furcilia larvae which is a potential food resource during winter. The hatching of icefish larvae during winter is apparently independent of the seasonal production cycle. Epipelagic eggs of Notothenia neglecta were found during the spawning season, which suggests that eggs ascend to the surface after demersal spawning and that development takes place near the sea surface during winter. Larvae of Notothenia kempi were chiefly confined to shelf and slope waters to the west of the Antarctic Peninsula, with larger larvae found in coastal shelf areas. Pleuragramma antarcticum occurred in the coastal waters off the Biscoe Islands, in the Gerlache Strait, and in the northern Bransfield Strait. The smallest larvae were found in the northern Bransfield Strait, whereas those at the Biscoe Islands and in Gerlache Strait waters were larger and of a similar size. A cyclonic gyre to the west of the Antarctic Peninsula observed in the austral summer was likely to have affected the larval drift of Pleuragramma antarcticum and Notothenia kempi. Differences in the timing of spawning and hatching and the vertical distribution of these larvae will lead to different transport and spatial distribution patterns. It is hypothesized that early winter conditions do not imply severe limitations on the year-class success of larval fish. Dispersal and increased mortality may occur during the second half of the winter.  相似文献   

16.
We evaluate the hypothesis that Atlantic cod larvae are passively transported by sea currents from off-shore spawning areas to settle in coastal waters, a hypothesis which has recently gained support from genetic analysis of cod in the North Sea-Skagerrak area. Such larval transport has been suggested to be an important mechanism behind the commonly observed low spatial genetic differentiation in many marine organisms. Here, we apply an ARMAX(2,2) model for juvenile abundance and use long-term monitoring data from the Skagerrak coast, constituting 54 continuous annual series from 1945 to 1997. Analysing the model, we find that the product of the size of the North Sea breeding stock and the strength of the net inflow of North Sea waters had a significant, positive effect on the abundance of coastal juvenile cod. The peak effect occurs during the month of March, just after spawning, when eggs and larvae remain pelagic and sensitive to currents. In contrast, we find no evidence of any direct effect of the North Sea spawning stock alone. Our analyses indicate that 15-20,000 0-group larvae from the North Sea reach each fjord per year, on average. This corresponds to about 1-10% of the total 0-group population in each fjord on average. These findings clearly demonstrate a direct link between larval drift and gene flow in the marine environment.  相似文献   

17.
The aquatic stages of the cattle biting pest, Simulium chutteri Lewis utilize river flow in their dispersal and colonization behaviour. Peaks of drifting activity in S. chutteri larvae occurred in the early morning and late afternoon. It is deduced that female flies scatter eggs onto slow flowing waters upstream of rapids. Larvae hatch from drifting eggs and colonize substrates in slower flowing regions upstream of rapids, while later stage instars move into faster flowing regions within rapids where they complete their development. This microhabitat selection by S. chutteri leads to rapid attainment of large population sizes in suitable sections of river and reduces competition between different stage larvae. In their utilization of a variety of microhabitats the larvae of this species differ from co-existing simuliid species which restrict developmental stages to single habitats.Catastrophic drift was recorded for S. chutteri larvae and could be a mechanism to regulate population size.Drift of simuliid larvae off rapids was not related to benthic population densities in the rapids and was therefore not due to excessive production. It is concluded that larval drift off rapids is related to habitat disturbances associated with water flow fluctuations and the activity of aquatic predators and other animals.The distribution of S. chutteri in the Vaal River is restricted by oviposition requirements of the adult female. Knowledge of drift behaviour and water flow requirements of Simuliidae have been applied to manage the population size of S. chutteri in the Vaal River.  相似文献   

18.
Data sets from three laboratories conducting studies of movements and migrations of Atlantic swordfish (Xiphias gladius) using pop-up satellite archival tags were pooled, and processed using a common methodology. From 78 available deployments, 38 were selected for detailed examination based on deployment duration. The points of deployment ranged from southern Newfoundland to the Straits of Florida. The aggregate data comprise the most comprehensive information describing migrations of swordfish in the Atlantic. Challenges in using data from different tag manufacturers are discussed. The relative utility of geolocations obtained with light is compared with results derived from temperature information for this deep-diving species. The results show that fish tagged off North America remain in the western Atlantic throughout their deployments. This is inconsistent with the model of stock structure used in assessments conducted by the International Commission for the Conservation of Atlantic Tunas, which assumes that fish mix freely throughout the North Atlantic.  相似文献   

19.
Offshore structures provide habitat that could facilitate species range expansions and the introduction of non-native species into new geographic areas. Surveys of assemblages of seven offshore oil and gas platforms in the Santa Barbara Channel revealed a change in distribution of the non-native sessile invertebrate Watersipora subtorquata, a bryozoan with a planktonic larval duration (PLD) of 24 hours or less, from one platform in 2001 to four platforms in 2013. We use a three-dimensional biophysical model to assess whether larval dispersal via currents from harbors to platforms and among platforms is a plausible mechanism to explain the change in distribution of Watersipora and to predict potential spread to other platforms in the future. Hull fouling is another possible mechanism to explain the change in distribution of Watersipora. We find that larval dispersal via currents could account for the increase in distribution of Watersipora from one to four platforms and that Watersipora is unlikely to spread from these four platforms to additional platforms through larval dispersal. Our results also suggest that larvae with PLDs of 24 hours or less released from offshore platforms can attain much greater dispersal distances than larvae with PLDs of 24 hours or less released from nearshore habitat. We hypothesize that the enhanced dispersal distance of larvae released from offshore platforms is driven by a combination of the offshore hydrodynamic environment, larval behavior, and larval release above the seafloor.  相似文献   

20.
Harbour porpoises (Phocoena phocoena) and harbour seals (Phoca vitulina) from German waters are infected by six species of lungworms (Metastrongyloidea). These nematodes parasitise the respiratory tract, are pathogenic and often cause secondary bacterial infections. In spite of their clinical and epidemiological significance, the life cycle and biology of lungworms in the marine environment is still largely unknown. Regions of ribosomal DNA (ITS-2) of all lungworms parasitising harbour porpoises and harbour seals in German waters were sequenced to characterise and compare the different species. The phylogenetic relationship among the lungworm species was analysed by means of their ITS-2 nucleotide sequences and the species-specific traits of the ITS-2 were used to screen wild fish as possible intermediate hosts for larval lungworms. Molecular markers were developed to identify larval nematodes via in-situ hybridisation of tissues of harbour porpoise and harbour seal prey fish. Potential wild intermediate fish hosts from the North Sea were dissected and found to harbour larval nematodes. Histological examination and in-situ hybridisation of tissue samples from these fish showed lungworm larvae within the intestinal wall. Based on larval ITS-2 nucleotide sequences, larval nematodes were identified as Pseudalius inflexus and Parafilaroides gymnurus. Turbot (Psetta maxima) bred and raised in captivity were experimentally infected with live L1s of Otostrongylus circumlitus and ensheathed larvae were recovered from the gastrointestinal tract of turbot and identified using molecular tools. Our results show that fish intermediate hosts play a role in the transmission of metastrongyloid nematodes of harbour porpoises and harbour seals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号