首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic analyses were done to determine what effect factor Xa and protein S had on the activated protein C (APC)-catalyzed inactivation of factor Va bound to phospholipid vesicles or human platelets. In the presence of optimal concentrations of phospholipid vesicles and Ca2+, a Km of 19.7 +/- 0.6 nM factor Va and a kcat of 23.7 +/- 10 mol of factor Va inactivated/mol of APC/min were obtained. Added purified plasma protein S increased the maximal rate of factor Va inactivation only 2-fold without effect on the Km. Protein S effect was unaltered when the phospholipid concentration was varied by 2 orders of magnitude. The reaction on unactivated human platelets yielded a Km = 12.5 +/- 2.6 nM and kcat = 6.2 +/- 0.6 mol of factor Va inactivated/mol of APC/min. Added purified plasma protein S or release of platelet protein S by platelet activation doubled the kcat value without affecting the Km. Addition of a neutralizing anti-protein S antibody abrogated the effect of plasma protein S or platelet-released protein S, but was without effect in the absence of plasma protein S or platelet activation. Studies with factor Xa indicated that factor Xa protects factor Va from APC-catalyzed inactivation by lowering the effective concentration of factor Va available to interact with APC. From these data a dissociation constant of less than 0.5 nM was calculated for the interaction of factor Xa with membrane-bound factor Va. Protein S abrogated the ability of factor Xa to protect factor Va from inactivation by APC without affecting the interaction of factor Xa with factor Va. These combined data suggest that one physiological function of protein S is to allow the APC-catalyzed inactivation of factor Va in the presence of factor Xa.  相似文献   

2.
We have monitored the thermotropic behavior of mixed dimyristoylglycerophosphoserine (Myr2GroPSer)/dimyristoylglycerophosphocholine (Myr2GroPCho) and Myr2GroPSer/dipalmitoylglycerophosphocholine (Pam2GroPCho) vesicles in the presence of blood-clotting factor Va, using 1,6-diphenyl-1,3, 5-hexatriene as a lipid probe. The Ca2+-independent interaction of factor Va with these vesicles caused a small increase (1-2 degrees C) in the phase transition temperature, regardless of whether Myr2GroPChe was the lower or higher-melting component of the mixed vesicles. The major effect of factor Va was to increase the polarization of diphenylhexatriene when the mixed vesicles were in the liquid crystalline phase. The protein did not change the anisotropy in the bilayer gel state. The increase in the polarization value above the transition temperature closely correlated with the amount of phospholipid-bound factor Va, as verified by a direct binding technique. In addition, we found that the affinity of factor Va for Myr2GroPSer/Myr2GroPCho and Myr2GroPSer/Pam2GroPCho greatly increased at temperatures above the transition temperatures. Time-dependent fluorescence anisotropy measurements of diphenylhexatriene embedded in vesicles in the liquid crystalline state give fluorescence decay curves which can best be fitted by two exponential functions with two rotational correlation times and a constant term. Vesicles composed of Myr2GroPSer exhibit more ordering than Myr2GroPCho vesicles. However, the order parameter of mixed vesicles composed of 40% Myr2GroPSer and 60% Myr2GroPCho (mol/mol) approached that of Myr2GroPCho. Factor Va dramatically increased the longer rotational correlation time of diphenylhexatriene embedded in mixed vesicles in the liquid crystalline state from 3.7 ns to about 17 ns. The second rank-order parameter increased only slightly, but the calculated steady-state anisotropy increased by twofold. These results indicate that the acidic phospholipid-dependent binding of factor Va to mixed vesicles has an ordering effect on the acyl chains of the acidic phospholipids in the outer layer, but leaves the bulk of the phospholipids, mainly phosphatidylcholine, unaltered. None of the factor-Va-induced alterations in the anisotropy parameters point to the occurrence of lateral phase separation.  相似文献   

3.
To test whether neutral glycosphingolipids can serve as anticoagulant cofactors, the effects of incorporation of neutral glycosphingolipids into phospholipid vesicles on anticoagulant and procoagulant reactions were studied. Glucosylceramide (GlcCer), lactosylceramide (LacCer), and globotriaosylceramide (Gb(3)Cer) in vesicles containing phosphatidylserine (PS) and phosphatidylcholine (PC) dose dependently enhanced factor Va inactivation by the anticoagulant factors, activated protein C (APC) and protein S. Addition of GlcCer to PC/PS vesicles enhanced protein S-dependent APC cleavage in factor Va at Arg-506 by 13-fold, whereas PC/PS vesicles alone minimally affected protein S enhancement of this reaction. Incorporation into PC/PS vesicles of GlcCer, LacCer, or Gb(3)Cer, but not galactosylceramide or globotetraosylceramide, dose dependently prolonged factor Xa-1-stage clotting times of normal plasma in the presence of added APC without affecting baseline clotting times in the absence of APC, showing that certain neutral glycosphingolipids enhance anticoagulant but not procoagulant reactions in plasma. Thus, certain neutral glycosphingolipids (e.g. GlcCer, LacCer, and Gb(3)Cer) can enhance anticoagulant activity of APC/protein S by mechanisms that are distinctly different from those of phospholipids alone. We speculate that under some circumstances certain neutral glycosphingolipids either in lipoprotein particles or in cell membranes may help form antithrombotic microdomains that might enhance down-regulation of thrombin by APC in vivo.  相似文献   

4.
Factor Va (fVa) is inactivated by activated protein C (APC) by cleavage of the heavy chain at Arg306, Arg506, and Arg679. Site-directed mutagenesis of human factor V cDNA was used to substitute Arg306-->Ala (rfVa306A) and Arg506-->Gln (rfVa506Q). Both the single and double mutants (rfVa306A/506Q) were constructed. The activation of these procofactors by alpha-thrombin and their inactivation by APC were assessed in coagulation assays using factor V-deficient plasma. All recombinant and wild-type proteins had similar initial cofactor activity and identical activation products (a factor Va molecule composed of light and heavy chains). Inactivation of factor Va purified from human plasma (fVaPLASMA) in HBS Ca2+ +0.5% BSA or in conditioned media by APC in the presence of phospholipid vesicles resulted in identical inactivation profiles and displayed identical cleavage patterns. Recombinant wild-type factor Va (rfVaWT) was inactivated by APC in the presence of phospholipid vesicles at an overall rate slower than fVaPLASMA. The rfVa306A and rfVa506Q mutants were each inactivated at rates slower than rfVaWT and fVaPLASMA. Following a 90-min incubation with APC, rfVa306A and rfVa506Q retain approximately 30-40% of the initial cofactor activity. The double mutant, rfVa306A/506Q, was completely resistant to cleavage and inactivation by APC retaining 100% of the initial cofactor activity following a 90-min incubation in the presence of APC. Recombinant fVaWT, rfVa306A, rfVa506Q, and rfVa306A/506Q were also used to evaluate the effect of protein S on the individual cleavage sites of the cofactor by APC. The initial rates of rfVaWT and rfVa306A inactivation in the presence of protein S were unchanged, indicating cleavage at Arg506 is not affected by protein S. The initial rate of rfVa506Q inactivation was increased, suggesting protein S slightly accelerates the cleavage at Arg306. Overall, the data demonstrate high specificity with respect to cleavage sites for APC on factor Va and demonstrate that cleavages of the cofactor at both Arg306 and Arg506 are required for efficient factor Va inactivation.  相似文献   

5.
The effect of membrane composition on the hemostatic balance   总被引:6,自引:0,他引:6  
Smirnov MD  Ford DA  Esmon CT  Esmon NL 《Biochemistry》1999,38(12):3591-3598
The phospholipid composition requirements for optimal prothrombin activation and factor Va inactivation by activated protein C (APC) anticoagulant were examined. Vesicles composed of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) supported factor Va inactivation relatively well. However, optimal factor Va inactivation still required relatively high concentrations of phosphatidylserine (PS). In addition, at a fixed concentration of phospholipid, PS, and APC, vesicles devoid of PE never attained a rate of factor Va inactivation achievable with vesicles containing PE. Polyunsaturation of any vesicle component also contributed significantly to APC inactivation of factor Va. Thus, PE makes an important contribution to factor Va inactivation that cannot be mimicked by PS. In the absence of polyunsaturation in the other membrane constituents, this contribution was dependent upon the presence of both the PE headgroup per se and unsaturation of the 1,2 fatty acids. Although PE did not affect prothrombin activation rates at optimal PS concentrations, PE reduced the requirement for PS approximately 10-fold. The Km(app) for prothrombin and the Kd(app) for factor Xa-factor Va decreased as a function of increasing PS concentration, reaching optimal values at 10-15% PS in the absence of PE but only 1% PS in the presence of PE. Fatty acid polyunsaturation had minimal effects. A lupus anticoagulant immunoglobulin was more inhibitory to both prothrombinase and factor Va inactivation in the presence of PE. The degree of inhibition of APC was significantly greater and much more dependent on the phospholipid composition than that of prothrombinase. Thus, subtle changes in the phospholipid composition of cells may control procoagulant and anticoagulant reactions differentially under both normal and pathological conditions.  相似文献   

6.
Activated protein C (APC) exerts its physiologic anticoagulant role by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. The synthetic peptide-(311-325) (KRNRTFVLNFIKIPV), derived from the heavy chain sequence of APC, potently inhibited APC anticoagulant activity in activated partial thromboplastin time (APTT) and Xa-1-stage coagulation assays in normal and in protein S-depleted plasma with 50% inhibition at 13 microM peptide. In a system using purified clotting factors, peptide-(311-325) inhibited APC-catalyzed inactivation of factor Va in the presence or absence of phospholipids with 50% inhibition at 6 microM peptide. However, peptide-(311-325) had no effect on APC amidolytic activity or on the reaction of APC with the serpin, recombinant [Arg358]alpha 1-antitrypsin. Peptide-(311-325) surprisingly inhibited factor Xa clotting activity in normal plasma, and in a purified system it inhibited prothrombinase activity in the presence but not in the absence of factor Va with 50% inhibition at 8 microM peptide. The peptide had no significant effect on factor Xa or thrombin amidolytic activity and no effect on the clotting of purified fibrinogen by thrombin, suggesting it does not directly inhibit these enzymes. Factor Va bound in a dose-dependent manner to immobilized peptide-(311-325). Peptide-(311-315) inhibited the binding of factor Va to immobilized APC or factor Xa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
By monitoring the activation of protein C and the regulation of factor Xa-catalyzed thrombin formation by the activated protein C (APC) on the surface of human umbilical vein endothelial cells (HUVEC), we found that functional protein C was synthesized in cultured HUVEC and expressed thereon in the presence of vitamin K. Furthermore, without exogenously added protein S, time-dependent and saturable accumulation of APC (20 fmol APC/10(5) cells) on the surface of HUVEC was observed. During prothrombin activation by the complex of membrane-bound factor Xa and endogenous factor Va formed on the surface of HUVEC, APC was generated, and the rate of thrombin formation decreased. Treatment of HUVEC with an antibody that inhibits the APC-catalyzed inactivation of endogenous factor Va clearly quenched the activity of surface-associated APC. Immunostaining of HUVEC with a horseradish peroxidase (HRP)-conjugated antibody that solely recognizes human protein C confirmed the presence of protein C on the surface of HUVEC. Northern blot analysis revealed that an about 1.8 kb mRNA species derived from HUVEC was hybridized with 32P-labeled protein C cDNA, as in the case of those from HepG2, which are known to synthesize normal protein C. The increase in the amount of protein C mRNA in HUVEC in parallel with cell growth provided supporting evidence for the synthesis of protein C during the culture of HUVEC. These results indicate that blood coagulation is regulated by endogenously generated and activated protein C, together with or without protein S, through inactivation of factor Va on the surface of endothelial cells.  相似文献   

8.
Activated protein C (APC) exerts its physiologic anticoagulant role by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. To identify the regions on the surface that mediate anticoagulant activity, 26 synthetic peptides were prepared representing 90% of the human protein C heavy chain primary structure and tested for their ability to inhibit APC anticoagulant activity. Peptide-(390-404) specifically inhibited APC activity in activated partial thromboplastin time and Xa-1-stage coagulation assays in normal, in protein S-depleted and Factor VIII-deficient plasma with 50% inhibition at 5 microM peptide. Polyclonal antibodies raised against this peptide and immunoaffinity-purified on a protein C-Sepharose column inhibited APC anticoagulant activity in activated partial thromboplastin time and Xa-1-stage assays in normal, protein S-depleted, and Factor VIII-deficient plasma with half-maximal inhibition at 30 nM anti-(390-404) antibody. Neither the peptide-(390-404) nor the anti-(390-404) antibodies inhibited APC amidolytic activity or the reaction of APC with recombinant [Arg358] alpha 1-antitrypsin. Furthermore, in a purified system, peptide-(390-404) inhibited APC-catalyzed inactivation of Factor Va in the presence as well as in the absence of phospholipids with 50% inhibition at 4 microM peptide. These data suggest that the region containing residues 390-404 in APC is essential for anticoagulant activity and is available to interact with antibodies or with other proteins such as the macromolecular substrates Factors Va or VIIIa.  相似文献   

9.
Recent studies have indicated that factor Va bound to activated platelets is partially protected from inactivation by activated protein C (APC). To explore whether this sustained factor Va activity could maintain ongoing thrombin generation, the kinetics of platelet factor Va-dependent prothrombinase activity and its inhibition by APC were studied. In an attempt to mimic physiologically relevant conditions, platelets were adhered to collagen type I-coated discs. These discs were then spun in solutions containing prothrombin and factor Xa either in the absence or presence of APC. The experiments were performed in the absence of platelet-derived microparticles, with thrombin generation and inhibition confined to the surface of the adherent platelets. APC completely inactivated platelet-associated prothrombinase activity with an overall second order rate constant of 3.3 x 10(6) m(-)1 s(-)1, which was independent of the prothrombin concentration over a wide range around the apparent K(m) for prothrombin. Kinetic studies on prothrombinase assembled at a planar phospholipid membrane composed of 25 mol % phosphatidylserine and 75 mol % phosphatidylcholine revealed a similar second order rate constant of inhibition (2.5 x 10(6) m(-1) s(-1)). Collectively, these data demonstrate that ongoing platelet factor Va-dependent thrombin generation at the surface of collagen-adherent platelets is effectively inhibited by APC. No differences were observed between the kinetics of APC inactivation of plasma-derived factor Va or platelet factor Va as part of the prothrombinase associated with, respectively, a planar membrane of synthetic phospholipids or collagen-adherent platelets.  相似文献   

10.
We investigated the effect of C4BP on APC-mediated inactivation of factor Va (FVa) in the absence and presence of protein S. FVa inactivation was biphasic (k(506) = 4.4 x 10(8) M(-)(1) s(-)(1), k(306) = 2.7 x 10(7) M(-)(1) s(-)(1)), and protein S accelerated Arg(306) cleavage approximately 10-fold. Preincubation of protein S with C4BP resulted in a total abrogation of protein S cofactor activity. C4BP also protected FVa from inactivation by APC in the absence of protein S. Control experiments with CLB-PS13, a monoclonal anti-protein S antibody, indicated that inhibition of FVa inactivation by C4BP was not mediated through contaminating traces of protein S in our reaction systems. Protection of FVa was prevented by a monoclonal antibody directed against the C4BP alpha-chain. Recombinant rC4BPalpha comprised of only alpha-chains also protected FVa, but in the presence of protein S, the level of protection was decreased, since rC4BPalpha lacks the beta-chain responsible for C4BP binding to protein S. A truncated C4BP beta-chain (SCR-1+2) inhibited protein S cofactor activity, but had no effect on FVa inactivation by APC in the absence of protein S. In conclusion, C4BP protects FVa from APC-catalyzed cleavage in a protein S-independent way through direct interactions of the alpha-chaims of C4BP with FVa and/or APC.  相似文献   

11.
Protein S enhances the rate of Factor Va inactivation by activated Protein C (Walker, F. J. (1980) J. Biol. Chem. 255, 5521-5524). The activity of protein S is saturable, appearing to interact stoichiometrically with activated Protein C. Diisopropylphosphate-modified activated Protein C reversed the effect of Protein S, further indicating that a Protein S-activated Protein C interaction is required for expression of the activity of Protein S. In the absence of phospholipid, Protein S had no effect on the rate of activated Protein C-catalyzed inactivation of Factor Va. The activity of Protein S was only expressed in the presence of phospholipid vesicles, where it appeared to increase the affinity of the inactivation system for phospholipid. Protein S had no effect upon the rate of Factor Va inactivation in the presence of saturating levels of phospholipid vesicles. The effects of Protein S on the kinetics of Factor Va inactivation corresponded with its effect on the interaction between activated Protein C and phospholipid vesicles, measured by light scattering. In the presence of Protein S, the binding of activated Protein C to phospholipid vesicles was enhanced. Protein S had no effect upon the binding on the zymogen (Protein C to phospholipid vesicles). In conclusion, the stimulatory effect of Protein S on the inactivation of Factor Va by activated Protein C can be attributed, in part, to the enhancement of the binding of activated Protein C to phospholipid vesicles.  相似文献   

12.
The kinetic parameters of bovine prothrombin activation by factor Xa were determined in the absence and presence of factor Va as a function of the phospholipid concentration and composition. In the absence of factor Va, the Km for prothrombin increases proportionally with the phospholipid concentration and correlates well with the affinity of prothrombin for the different membranes. Phospholipid vesicles with a high affinity for prothrombin yield low Km values compared to membranes with less favorable binding parameters. At limited phospholipid concentrations, the Vmax of prothrombin activation correlates with the binding affinity of factor Xa for the various phospholipid vesicles. Membranes with a high affinity for factor Xa have high Vmax values, while for membranes with a low affinity a low Vmax is observed. Extrapolation of double-reciprocal plots of 1/Vmax vs. 1/[phospholipid] to infinite phospholipid concentrations, a condition at which all factor Xa would participate in prothrombin activation, yields a kcat of 2-4 min-1 independent of the type and amount of acidic phospholipid present in the vesicles. Also, in the presence of factor Va the Km for prothrombin varies proportionally with the phospholipid concentration. There is, however, no correlation between the binding parameters and the Km. Factor Va drastically lowers the Km for prothrombin for vesicles that have a low affinity for prothrombin. Vesicles composed of 20 mol % phosphatidylglycerol and 80 mol % phosphatidylcholine have a Km of 0.04 microM when factor Va is present, compared to 2.2 microM determined in the absence of factor Va.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Inactivation of factor Va (FVa) by activated protein C (APC) is a key reaction in the down-regulation of thrombin formation. FVa inactivation by APC is correlated with a loss of FXa cofactor activity as a result of three proteolytic cleavages in the FVa heavy chain at Arg306, Arg506, and Arg679. Recently, we have shown that heparin specifically inhibits the APC-mediated cleavage at Arg506 and stimulates cleavage at Arg306. Three-dimensional molecular models of APC docked at the Arg306 and Arg506 cleavage sites in FVa have identified several FVa amino acids that may be important for FVa inactivation by APC in the absence and presence of heparin. Mutagenesis of Lys320, Arg321, and Arg400 to Ala resulted in an increased inactivation rate by APC at Arg306, which indicates the importance of these residues in the FVa-APC interaction. No heparin-mediated stimulation of Arg306 cleavage was observed for these mutants, and stimulation by protein S was similar to that of wild type FVa. With this, we have now demonstrated that a cluster of basic residues in FVa comprising Lys320, Arg321, and Arg400 is required for the heparin-mediated stimulation of cleavage at Arg306 by APC. Furthermore, mutations that were introduced near the Arg506 cleavage site had a significant but modest effect on the rate of APC-catalyzed FVa inactivation, suggesting an extended interaction surface between the FVa Arg506 site and APC.  相似文献   

14.
Homocysteine inhibits inactivation of factor Va by activated protein C   总被引:5,自引:0,他引:5  
We report the effect of homocysteine on the inactivation of factor Va by activated protein C (APC) using clotting assays, immunoblotting, and radiolabeling experiments. Homocysteine, cysteine, or homocysteine thiolactone have no effect on factor V activation by alpha-thrombin. Factor Va derived from homocysteine-treated factor V was inactivated by APC at a reduced rate. The inactivation impairment increased with increasing homocysteine concentration (pseudo first order rate k = 1.2, 0.9, 0.7, 0.4 min(-1) at 0, 0.03, 0.1, 1 mm homocysteine, respectively). Neither cysteine nor homocysteine thiolactone treatment of factor V affected APC inactivation of derived factor Va. Western blot analyses of APC inactivation of homocysteine-modified factor Va are consistent with the results of clotting assays. Factor Va, derived from factor V treated with 1 mm beta-mercaptoethanol was inactivated more rapidly than the untreated protein sample. Factor V incubated with [(35)S]homocysteine (10-450 micrometer) incorporated label within 5 min, which was found only in those fragments that contained free sulfhydryl groups: the light chain (Cys-1960, Cys-2113), the B region (Cys-1085), and the 26/28-kDa (residues 507-709) APC cleavage products of the heavy chain (Cys-539, Cys-585). Treatment with beta-mercaptoethanol removed all radiolabel. Plasma of patients assessed to be hyperhomocysteinemic showed APC resistance in a clot-based assay. Our results indicate that homocysteine rapidly incorporates into factor V and that the prothrombotic tendency in hyperhomocysteinemia may be related to impaired inactivation of factor Va by APC due to homocysteinylation of the cofactor by modification of free cysteine(s).  相似文献   

15.
The mechanism of inactivation of bovine factor Va by plasmin was studied in the presence and absence of phospholipid vesicles (PCPS vesicles). Following 60-min incubation with plasmin (4 nm) membrane-bound factor Va (400 nm) is completely inactive, whereas in the absence of phospholipid vesicles following a 1-h incubation period, the cofactor retains 90% of its initial cofactor activity. Amino acid sequencing of the fragments deriving from cleavage of factor Va by plasmin demonstrated that while both chains of factor Va are cleaved by plasmin, only cleavage of the heavy chain correlates with inactivation of the cofactor. In the presence of a membrane surface the heavy chain of the bovine cofactor is first cleaved at Arg(348) to generate a fragment of M(r) 47,000 containing the NH(2)-terminal part of the cofactor (amino acid residues 1-348) and a M(r) 42,000 fragment (amino acid residues 349-713). This cleavage is associated with minimal loss in cofactor activity. Complete loss of activity of the membrane-bound cofactor coincides with three cleavages at the COOH-terminal portion of the M(r) 47,000 fragment: Lys(309), Lys(310), and Arg(313). These cleavages result in the release of the COOH terminus of the molecule and the production of a M(r) 40,000 fragment containing the NH(2)-terminal portion of the factor Va molecule. Factor Va was treated with plasmin in the absence of phospholipid vesicles followed by the addition of PCPS vesicles and activated protein C (APC). A rapid inactivation of the cofactor was observed as a result of cleavage of the M(r) 47,000 fragment at Arg(306) by APC and appearance of a M(r) 39,000 fragment. These data suggest a critical role of the amino acid sequence 307-348 of factor Va. A 42-amino acid peptide encompassing the region 307-348 of human factor Va (N42R) was found to be a good inhibitor of factor Va clotting activity with an IC(50) of approximately 1.3 microm. These data suggest that plasmin is a potent inactivator of factor Va and that region 307-348 of the cofactor plays a critical role in cofactor function and may be responsible for the interaction of the cofactor with factor Xa and/or prothrombin.  相似文献   

16.
Factor V (FV) is a single-chain plasma protein containing 13-25% carbohydrate by mass. Studies were done to determine if these carbohydrate moieties altered the activated protein C (APC)-catalyzed cleavage and inactivation of both FV and the cofactor which results from its activation by alpha-thrombin, factor Va(IIa) (FVa(IIa)). Treatment of purified FV with N-glycanase and neuraminidase under nonprotein-denaturing conditions removed approximately 20-30% of the carbohydrate from the heavy chain region of the molecule. When glycosidase-treated FV was analyzed in an aPTT (activated partial thromboplastin time)-based APC sensitivity assay, the APC sensitivity ratio (APC-SR) increased from 2.34 to 3.33. In contrast, when glycosidase-treated FV was activated with alpha-thrombin, the addition of the resulting FVa(IIa) to the plasma-based APC sensitivity assay produced no substantial increase in the APC-SR. Additional functional analyses of the APC-catalyzed inactivation of FVa(IIa) in an assay consisting of purified components indicated that both glycosidase-treated and untreated FVa(IIa) expressed identical cofactor activities and were inactivated at identical rates. Analyses of the APC-catalyzed cleavage of glycosidase-treated FV at Arg(306), the initial cleavage site, revealed a 10-fold rate increase when compared to untreated FV. In contrast, and consistent with functional assays, similar analyses of FVa(IIa), derived from those FV species, revealed near-identical rates of APC-catalyzed cleavage at both the Arg(506) and Arg(306)sites. These combined results indicate that N-linked carbohydrate moieties play a substantial role in the APC-catalyzed cleavage and inactivation of FV but not FVa(IIa) at position Arg(306) and that the Arg(306) cleavage sites of FV and FVa(IIa) are distinct substrates for APC.  相似文献   

17.
The endothelial cell protein C receptor (EPCR) functions as an important regulator of the protein C anticoagulant pathway by binding protein C and enhancing activation by the thrombin-thrombomodulin complex. EPCR binds to both protein C and activated protein C (APC) with high affinity. A soluble form of EPCR (sEPCR) circulates in plasma and inhibits APC anticoagulant activity. In this study, we investigate the mechanisms by which sEPCR modulates APC function. Soluble EPCR inhibited the inactivation of factor Va by APC only in the presence of phospholipid vesicles. By using flow cytometric analysis in the presence of 3 mM CaCl(2) and 0. 6 mM MgCl(2), sEPCR inhibited the binding of protein C and APC to phospholipid vesicles (K(i) = 40 +/- 7 and 33 +/- 4 nM, respectively). Without MgCl(2), the K(i) values increased approximately 4-fold. Double label flow cytometric analysis using fluorescein-APC and Texas Red-sEPCR indicated that the APC.sEPCR complex does not interact with phospholipid vesicles. By using surface plasmon resonance, we found that sEPCR also inhibited binding of protein C to phospholipid in a dose-dependent fashion (K(i) = 32 nM). To explore the possibility that sEPCR evokes structural changes in APC, fluorescence spectroscopy studies were performed to monitor sEPCR/Fl-APC interactions. sEPCR binds saturably to Fl-APC (K(d) = 27 +/- 13 nM) with a maximum decrease in Fl-APC fluorescence of 10.8 +/- 0.6%. sEPCR also stimulated the amidolytic activity of APC toward synthetic substrates. We conclude that sEPCR binding to APC blocks phospholipid interaction and alters the active site of APC.  相似文献   

18.
Lipid oxidation enhances the function of activated protein C   总被引:4,自引:0,他引:4  
Although lipid oxidation products are usually associated with tissue injury, it is now recognized that they can also contribute to cell activation and elicit anti-inflammatory lipid mediators. In this study, we report that membrane phospholipid oxidation can modulate the hemostatic balance. Oxidation of natural phospholipids results in an increased ability of the membrane surface to support the function of the natural anticoagulant, activated protein C (APC), without significantly altering the ability to support thrombin generation. Lipid oxidation also potentiated the ability of protein S to enhance APC-mediated factor Va inactivation. Phosphatidylethanolamine, phosphatidylserine, and polyunsaturation of the fatty acids were all required for the oxidation-dependent enhancement of APC function. A subgroup of thrombotic patients with anti-phospholipid antibodies specifically blocked the oxidation-dependent enhancement of APC function. Since leukocytes are recruited and activated at the thrombus or sites of vessel injury, our findings suggest that after the initial thrombus formation, lipid oxidation can remodel the membrane surface resulting in increased anticoagulant function, thereby reducing the thrombogenicity of the thrombus or injured vessel surface. Anti-phospholipid antibodies that block this process would therefore be expected to contribute to thrombus growth and disease.  相似文献   

19.
The anticoagulant protein C pathway   总被引:16,自引:0,他引:16  
Dahlbäck B  Villoutreix BO 《FEBS letters》2005,579(15):3310-3316
The anticoagulant protein C system regulates the activity of coagulation factors VIIIa and Va, cofactors in the activation of factor X and prothrombin, respectively. Protein C is activated on endothelium by the thrombin-thrombomodulin-EPCR (endothelial protein C receptor) complex. Activated protein C (APC)-mediated cleavages of factors VIIIa and Va occur on negatively charged phospholipid membranes and involve protein cofactors, protein S and factor V. APC also has anti-inflammatory and anti-apoptotic activities that involve binding of APC to EPCR and cleavage of PAR-1 (protease-activated receptor-1). Genetic defects affecting the protein C system are the most common risk factors of venous thrombosis. The protein C system contains multi-domain proteins, the molecular recognition of which will be reviewed.  相似文献   

20.
The effect of replacing the gamma-carboxyglutamic acid domain of activated protein C (APC) with that of prothrombin on the topography of the membrane-bound enzyme was examined using fluorescence resonance energy transfer. The average distance of closest approach (assuming kappa2 = 2/3) between a fluorescein in the active site of the chimera and octadecylrhodamine at the membrane surface was 89 A, compared with 94 A for wild-type APC. The gamma-carboxyglutamic acid domain substitution therefore lowered and/or reoriented the active site, repositioning it close to the 84 A observed for the APC. protein S complex. Protein S enhances wild-type APC cleavage of factor Va at Arg306, but the inactivation rate of factor Va Leiden by the chimera alone is essentially equal to that by wild-type APC plus protein S. These data suggest that the activities of the chimera and of the APC.protein S complex are equivalent because the active site of the chimeric protein is already positioned near the optimal location above the membrane surface to cleave Arg306. Thus, one mechanism by which protein S regulates APC activity is by relocating its active site to the proper position above the membrane surface to optimize factor Va cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号