首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have isolated a rab-related (responsive to ABA) gene, rab18 from Arabidopsis thaliana. The gene encodes a hydrophilic, glycine-rich protein (18.5 kDa), which contains the conserved serine- and lysine-rich domains characteristic of similar RAB proteins in other plant species. The rab18 mRNA accumulates in plants exposed to low temperature, water stress or exogenous ABA but not in plants subjected to heat shock. This stress-related accumulation of the rab18 mRNA is markedly decreased in the ABA-synthesis mutant aba-1, the ABA-response mutant abi-1 or in wild-type plants treated with the carotenoid synthesis inhibitor, fluridone. Exogenous ABA treatment can induce the rab18 mRNA in the aba-1 mutant but not in the abi-1 mutant. These results provide direct genetic evidence for the ABA-dependent regulation of the rab18 gene in A. thaliana.  相似文献   

3.
4.
Freezing injury is a major factor limiting the geographical distribution of plant species and the growth and yield of crop plants. Plants from temperate climates are able to increase their freezing tolerance during exposure to low but non‐freezing temperatures in a process termed cold acclimation. Damage to cellular membranes is the major cause of freezing injury in plants, and membrane lipid composition is strongly modified during cold acclimation. Forward and reverse genetic approaches have been used to probe the role of specific lipid‐modifying enzymes in the freezing tolerance of plants. In the present paper we describe an alternative ecological genomics approach that relies on the natural genetic variation within a species. Arabidopsis thaliana has a wide geographical range throughout the Northern Hemisphere with significant natural variation in freezing tolerance that was used for a comparative analysis of the lipidomes of 15 Arabidopsis accessions using ultra‐performance liquid chromatography coupled to Fourier‐transform mass spectrometry, allowing the detection of 180 lipid species. After 14 days of cold acclimation at 4°C the plants from most accessions had accumulated massive amounts of storage lipids, with most of the changes in long‐chain unsaturated triacylglycerides, while the total amount of membrane lipids was only slightly changed. Nevertheless, major changes in the relative amounts of different membrane lipids were also evident. The relative abundance of several lipid species was highly correlated with the freezing tolerance of the accessions, allowing the identification of possible marker lipids for plant freezing tolerance.  相似文献   

5.
A cDNA clone corresponding to a novel low-temperature-induced Arabidopsis thaliana gene, named lti140, was employed for studies of the environmental signals and the signal pathways involved in cold-induced gene expression. The single-copy lti140 gene encodes a 140 kDa cold acclimation-related polypeptide. The lti140 mRNA accumulates rapidly in both leaves and roots when plants are subject to low temperature or water stress or are treated with the plant hormone abscisic acid (ABA), but not by heat-shock treatment. The low-temperature induction of lti140 is not mediated by ABA, as shown by normal induction of the lti140 mRNA in both ABA-deficient and ABA-insensitive mutants and after treatment with the ABA biosynthesis inhibitor fluridone. The effects of low temperature and exogenously added ABA are not cumulative suggesting that these two pathways converge. The induction by ABA is abolished in the ABA-insensitive mutant abi-1 indicating that the abi-1 mutation defines a component in the ABA response pathway. Accumulation of the lti140 mRNA in plants exposed to water stress was somewhat reduced by treatment with fluridone and in the ABA-insensitive mutant abi-1 suggesting that the water stress induction of lti140 could be partly mediated by ABA. It is concluded that three separate but converging signal pathways regulate the expression of the lti140 gene.  相似文献   

6.
Low temperature represents a form of abiotic stress that varies predictably with latitude and altitude and to which organisms have evolved multiple physiological responses. Plants provide an especially useful experimental system for investigating the ecological and evolutionary dynamics of tolerance to low temperature because of their sessile lifestyle and inability to escape ambient atmospheric conditions. Here, intraspecific variation in freezing tolerance was investigated in Arabidopsis thaliana by conducting freezing tolerance assays on 71 accessions collected from across the native range of the species. Assays were performed at multiple minimum temperatures and on both cold-acclimated and non-cold-acclimated individuals. Considerable variation in freezing tolerance was observed among accessions both with and without a prior cold-acclimation treatment, suggesting that differences among accessions in cold-acclimation capacity as well as differences in intrinsic physiology contribute to variation in this phenotype. A highly significant positive relationship was observed between freezing tolerance and latitude of origin of accessions, consistent with a major role for natural selection in shaping variation in this phenotype. Clinal variation in freezing tolerance in A. thaliana coupled with considerable knowledge of the underlying genetics and physiology of this phenotype should allow evolutionary genetic analysis at multiple levels.  相似文献   

7.
Sugar content and freezing tolerance of protoplasts of Arabidopsis thaliana leaves were manipulated by incubating seedlings in a sucrose solution before protoplast isolation. Incubation in a 400 mM sucrose solution at 2 °C in the dark increased their freezing tolerance equivalent to that achieved after a conventional cold acclimation at 2 °C. The increased freezing tolerance was due to a decrease in the incidence of freeze‐induced lesions: expansion‐induced lysis (EIL) between ?2 and ?4 °C and loss of osmotic responsiveness (LOR) between ?5 and ?12 °C. The concentration of sucrose in the incubation medium required to minimize the incidence of the lesions was substantially different: 10–35 mM for EIL and 30–400 mM for LOR. Incubation in the sucrose solution at 23 °C decreased LOR only at ?5 and ?6 °C but less than that incubated at 2 °C, and there was no effect on EIL. Incubation in sorbitol solutions at 2 °C also decreased LOR at ?5 and ?6 °C but much less than in the sucrose solution. These results suggest that low concentrations of sucrose act as a metabolic substrate for the low‐temperature‐induced alterations required for the amelioration of EIL and, at higher concentrations, sucrose has a direct cryoprotective effect to minimize LOR.  相似文献   

8.
Photosynthesis is especially sensitive to environmental conditions, and the composition of the photosynthetic apparatus can be modulated in response to environmental change, a process termed photosynthetic acclimation. Previously, we identified a role for a cytosolic fumarase, FUM2 in acclimation to low temperature in Arabidopsis thaliana. Mutant lines lacking FUM2 were unable to acclimate their photosynthetic apparatus to cold. Here, using gas exchange measurements and metabolite assays of acclimating and non‐acclimating plants, we show that acclimation to low temperature results in a change in the distribution of photosynthetically fixed carbon to different storage pools during the day. Proteomic analysis of wild‐type Col‐0 Arabidopsis and of a fum2 mutant, which was unable to acclimate to cold, indicates that extensive changes occurring in response to cold are affected in the mutant. Metabolic and proteomic data were used to parameterize metabolic models. Using an approach called flux sampling, we show how the relative export of triose phosphate and 3‐phosphoglycerate provides a signal of the chloroplast redox state that could underlie photosynthetic acclimation to cold.  相似文献   

9.
10.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

11.
Central carbohydrate metabolism of Arabidopsis thaliana is known to play a crucial role during cold acclimation and the acquisition of freezing tolerance. During cold exposure, many carbohydrates accumulate and a new metabolic homeostasis evolves. In the present study, we analyse the diurnal dynamics of carbohydrate homeostasis before and after cold exposure in three natural accessions showing distinct cold acclimation capacity. Diurnal dynamics of soluble carbohydrates were found to be significantly different in cold-sensitive and cold-tolerant accessions. Although experimentally determined maximum turnover rates for sucrose phosphate synthase in cold-acclimated leaves were higher for cold-tolerant accessions, model simulations of diurnal carbohydrate dynamics revealed similar fluxes. This implied a significantly higher capacity for sucrose synthesis in cold-tolerant than cold-sensitive accessions. Based on this implication resulting from mathematical model simulation, a critical temperature for sucrose synthesis was calculated using the Arrhenius equation and experimentally validated in the cold-sensitive accession C24. At the critical temperature suggested by model simulation, an imbalance in photosynthetic carbon fixation ultimately resulting in oxidative stress was observed. It is therefore concluded that metabolic capacities at least in part determine the ability of accessions of Arabidopsis thaliana to cope with changes in environmental conditions.  相似文献   

12.
Although enhancement of freezing tolerance in plants during cold acclimation is closely associated with an increase in the cryostability of plasma membrane, the molecular mechanism for the increased cryostability of plasma membrane is still to be elucidated. In Arabidopsis, enhanced freezing tolerance was detectable after cold acclimation at 2 degrees C for as short as 1 day, and maximum freezing tolerance was attained after 1 week. To identify the plasma membrane proteins that change in quantity in response to cold acclimation, a highly purified plasma membrane fraction was isolated from leaves before and during cold acclimation, and the proteins in the fraction were separated with gel electrophoresis. We found that there were substantial changes in the protein profiles after as short as 1 day of cold acclimation. Subsequently, using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS), we identified 38 proteins that changed in quantity during cold acclimation. The proteins that changed in quantity during the first day of cold acclimation include those that are associated with membrane repair by membrane fusion, protection of the membrane against osmotic stress, enhancement of CO2 fixation, and proteolysis.  相似文献   

13.
Abstract Cold-acclimated stems of red-osier dogwood (Cornus sericea L.) were sampled in midwinter and early spring and subjected to the following low temperature treatments: (a)0 →?40 → 0°C; (b) 0 →?40 →? 196 → 0°C; (c) 0 →?40 →?196 →?269 →?196 → 0°C; (d) 0 →?40 →?269 →?196 → 0°C; (e) 0 →?196 → 0°C; (f) 0 →?269 →?196 →0°C. The cortical parenchyma cells of the outer stem layers survived exposure to ?269°C when pre-frozen to ?40°C and either transferred directly to ?269°C or to ?196°C and then to ?269°C (treatments c and d). Acclimated stems transferred to a greenhouse (22°C) 2 weeks prior to the low temperature treatments deacclimated and were not able to survive freezing to ?10°C. Cortical cells of stem samples taken in March, near the time when dogwood naturally deacclimates, survived ?196°C (treatment b), but not ?269°C (treatment cord). Thus, the freezing tolerance of dogwood varies seasonally from near ?10°C to below ?269°C.  相似文献   

14.
Cold tolerance in plants is an ecologically important trait that has been under intensive study for basic and applied reasons. Determining the fitness benefits and costs of cold tolerance has previously been difficult because cold tolerance is normally an induced trait that is not expressed in warm environments. The recent creation of transgenic plants constitutively expressing cold tolerance genes enables the investigation of the fitness consequences of cold tolerance in multiple temperature environments. We studied three genes from the CBF (C-repeat/dehydration responsive element binding factor) cold tolerance pathway, CBF1, 2 and 3, in Arabidopsis thaliana to test for benefits and costs of constitutive cold tolerance. We used multiple insertion lines for each transgene and grew the lines in cold and control conditions. Costs of cold tolerance, as determined by fruit number, varied by individual transgene. CBF2 and 3 overexpressers showed costs of cold tolerance, and no fitness benefits, in both environments. CBF1 overexpressing plants showed no fitness cost of cold tolerance in the control environment and showed a marginal fitness benefit in the cold environment. These results suggest that constitutive expression of traits that are normally induced in response to environmental stress will not always lead to costs in the absence of that stress, and that the ecological risks of CBF transgene escape should be assessed prior to their use in commercial agriculture.  相似文献   

15.
Stress-induced accumulation of five (COR47, LTI29, ERD14, LTI30 and RAB18) and tissue localization of four (LTI29, ERD14, LTI30 and RAB18) dehydrins in Arabidopsis were characterized immunologically with protein-specific antibodies. The five dehydrins exhibited clear differences in their accumulation patterns in response to low temperature, ABA and salinity. ERD14 accumulated in unstressed plants, although the protein level was up-regulated by ABA, salinity and low temperature. LTI29 mainly accumulated in response to low temperature, but was also found in ABA- and salt-treated plants. LTI30 and COR47 accumulated primarily in response to low temperature, whereas RAB18 was only found in ABA-treated plants and was the only dehydrin in this study that accumulated in dry seeds.Immunohistochemical localization of LTI29, ERD14 and RAB18 demonstrated tissue and cell type specificity in unstressed plants. ERD14 was present in the vascular tissue and bordering parenchymal cells, LTI29 and ERD14 accumulated in the root tip, and RAB18 was localized to stomatal guard cells. LTI30 was not detected in unstressed plants. The localization of LTI29, ERD14 and RAB18 in stress-treated plants was not restricted to certain tissues or cell types. Instead these proteins accumulated in most cells, although cells within and surrounding the vascular tissue showed more intense staining. LTI30 accumulated primarily in vascular tissue and anthers of cold-treated plants.This study supports a physiological function for dehydrins in certain plant cells during optimal growth conditions and in most cell types during ABA or cold treatment. The differences in stress specificity and spatial distribution of dehydrins in Arabidopsis suggest a functional specialization for the members of this protein family.  相似文献   

16.
17.
Two related protein phosphatases 2C, ABI1 and AtPP2CA have been implicated as negative regulators of ABA signalling. In this study we characterized the role of AtPP2CA in cold acclimation. The pattern of expression of AtPP2CA and ABI1 was studied in different tissues and in response to abiotic stresses. The expression of both AtPP2CA and ABI1 was induced by low temperature, drought, high salt and ABA. The cold and drought-induced expression of these genes was ABA-dependent, but divergent in various ABA signalling mutants. In addition, the two PP2C genes exhibited differences in their tissue-specific expression as well as in temporal induction in response to low temperature. To elucidate the function of AtPP2CA in cold acclimation further, the corresponding gene was silenced by antisense inhibition. Transgenic antisense plants exhibited clearly accelerated development of freezing tolerance. Both exposure to low temperature and application of ABA resulted in enhanced freezing tolerance in antisense plants. These plants displayed increased sensitivity to ABA both during development of frost tolerance and during seed germination, but not in their drought responses. Furthermore, the expression of cold-and ABA-induced genes was enhanced in transgenic antisense plants. Our results suggest that AtPP2CA is a negative regulator of ABA responses during cold acclimation.  相似文献   

18.
Cold acclimation is necessary for winter wheat (Triticum aestivum L.) to achieve its genetically determined maximum freezing tolerance, and cold also fulfils the vernalisation requirement. Chromosome 5A is a major regulator of these traits. The aim of the present study was to discover whether changes in the half‐cell redox potential of the glutathione/glutathione disulphide (GSH/GSSG) and ascorbate/dehydroascorbate (AA/DHA) couples induced by cold acclimation are related to freezing tolerance and vernalisation requirement in a specific genetic system including chromosome 5A substitution lines. The amounts of H2O2 and AA, and the AA/DHA ratio showed a rapid and transient increase in the crown of all genotypes during the first week of acclimation, followed by a gradual increase during the subsequent 2 weeks. The amount of GSH and its ratio compared to GSSG quickly decreased during the first day, while later these parameters showed a continuous slow increase. The H2O2, AA and GSH concentrations, AA/DHA and GSH/GSSG ratios and the half‐cell reduction potential of the GSH/GSSG couple were correlated with the level of freezing tolerance after 22 days at 2 °C; hence these parameters may have an important role in the acclimation process. In contrast to H2O2 and the non‐enzymatic antioxidants, the lipid peroxide concentration and activity of the four antioxidant enzymes exhibited a transient increase during the first week, with no significant difference between genotypes. None of the parameters studied showed any relationship with the vegetative/generative transition state monitored as apex morphology and vernalisation gene expression.  相似文献   

19.
20.
We have examined the cold-induced enhancement of freezing tolerance and expression of cold-regulated (cor) genes in Arabidopsis thaliana (L.) Heynh (Landsberg erecta) and abscisic acid (ABA)-deficient (aba) and ABA-insensitive (abi) mutants derived from it. The results indicate that the abi mutations had no apparent effect on freezing tolerance, while the aba mutations did: cold-acclimated aba mutants were markedly impaired in freezing tolerance compared to wild-type plants. In addition, it was observed that non-frozen leaves from both control and cold-treated aba mutant plants were more ion-leaky than those from corresponding wild-type plants. These data are consistent with previous observations indicating that ABA levels can affect freezing tolerance. Whether ABA has a direct role in the enhancement of freezing tolerance that occurs during cold acclimation, however, is uncertain. Several studies have suggested that ABA might mediate certain changes in gene expression that occur during cold acclimation. Our data indicate that the ABA-induced expression of three ABA-regulated Arabidopsis cor genes was unaffected in the abi2, abi3, and aba-1 mutants, but was dramatically impaired in the abi1 mutant. Cold-regulated expression of all three cor genes, however, was nearly the same in wild-type and abi1 mutant plants. These data suggest that the cold-regulated and ABA-regulated expression of the three cor genes may be mediated through independent control mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号