首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In rapidly growing, highly glycolytic hepatoma cells as much as 65% of the total cell hexokinase is bound to the outer mitochondrial membrane [Parry, D.M., & Pedersen, P.L. (1983) J. Biol. Chem. 258, 10904-10912]. In this paper, we describe the purification to apparent homogeneity of a mitochondrial pore-forming protein from the highly glycolytic AS-30D rat hepatoma cell line. The purified protein shows a single 35 000-dalton band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, an amino acid composition slightly more hydrophobic than that of the rat liver pore protein (also known as VDAC or mitochondrial porin), and a channel-forming activity of 136 channels min-1 (microgram of protein)-1. In addition to displaying the properties characteristic of VDAC (single-channel conductance, voltage dependence, and preference for anions), we observe that the AS-30D VDAC protein is one of only three mitochondrial proteins that bind [14C]dicyclohexylcarbodiimide (DCCD) at relatively low dosages (2 nmol of DCCD/mg of mitochondrial protein). Significantly, treatment of intact mitochondria isolated from either rat liver or the AS-30D hepatoma with DCCD results in an almost complete inhibition of their ability to binding hexokinase. Fifty percent inhibition of binding occurs at less than 2 nmol of DCCD/mg of mitochondrial protein. In contrast to DCCD, water-soluble carbodiimides are without effect on hexokinase binding. These results suggest that the pore-forming protein of tumor mitochondria forms at least part of the hexokinase receptor complex. In addition, they indicate that a carboxyl residue located within a hydrophobic region of the receptor complex may play a critical role in hexokinase binding.  相似文献   

2.
A heat-stable protein has been purified from rat liver mitochondria which inhibits the ATP hydrolytic activity of both the soluble and membrane-bound mitochondrial F1-ATPase. The overall purification is about 2400-fold with the major purification step consisting of Sephadex "affinity" chromatography. The purified rat liver inhibitor is homogeneous as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 12,300. Amino acid analysis reveals a high content of glutamic acid, lysine, and arginine and the absence of cysteine, proline and methionine. Whether tested with the rat liver or bovine heart ATPase, the liver inhibitor is equally as potent and specific as the heart inhibitor preparation of Pullman and Monroy (Pullman, M.E., and Monroy, G.C. (1963) J. Biol. Chem. 238, 3762-3769). Although the results presented show that the rat liver ATPase inhibitor resembles closely the ATPase inhibitors from other tissues with respect to specific activity and reaction specificity, it is important to note that the rat liver inhibitor is almost 2000 daltons larger than the bovine heart inhibitor, about 5000 daltons larger than ATPase inhibitors of yeast, and contains significantly more lysine residues than both the bovine heart and yeast inhibitors.  相似文献   

3.
4.
《The Journal of cell biology》1989,109(6):2665-2675
When nuclear localization sequences (termed NLS) are placed at the N terminus of cytochrome c1, a mitochondrial inner membrane protein, the resulting hybrid proteins do not assemble into mitochondria when synthesized in the yeast Saccharomyces cerevisiae. Cells lacking mitochondrial cytochrome c1, but expressing the hybrid NLS-cytochrome c1 proteins, are unable to grow on glycerol since the hybrid proteins are associated primarily with the nucleus. A similar hybrid protein with a mutant NLS is transported to and assembled into the mitochondria. To identify proteins that might be involved in recognition of nuclear localization signals, we isolated conditional- lethal mutants (npl, for nuclear protein localization) that missorted NLS-cytochrome c1 to the mitochondria, allowing growth on glycerol. The gene corresponding to one complementation group (NPL1) encodes a protein with homology to DnaJ, an Escherichia coli heat shock protein. npl1-1 is allelic to sec63, a gene that affects transit of nascent secretory proteins across the endoplasmic reticulum. Rothblatt, J. A., R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman. 1989. J. Cell Biol. 109:2641-2652. The npl1 mutants reported here also weakly affect translocation of preprocarboxypeptidaseY across the ER membrane. A normally nuclear hybrid protein containing a NLS fused to invertase and a nucleolar protein are not localized to the nucleus in npl1/sec63 cells at the nonpermissive temperature. Thus, NPL1/SEC63 may act at a very early common step in localization of proteins to the nucleus and the ER. Alternatively, by affecting ER and nuclear envelope assembly, npl1 may indirectly alter assembly of proteins into the nucleus.  相似文献   

5.
The structure of mitochondria is highly dynamic and depends on the balance of fusion and fission processes. Deletion of the mitochondrial dynamin-like protein Mgm1 in yeast leads to extensive fragmentation of mitochondria and loss of mitochondrial DNA. Mgm1 and its human ortholog OPA1, associated with optic atrophy type I in humans, were proposed to be involved in fission or fusion of mitochondria or, alternatively, in remodeling of the mitochondrial inner membrane and cristae formation (Wong, E. D., Wagner, J. A., Gorsich, S. W., McCaffery, J. M., Shaw, J. M., and Nunnari, J. (2000) J. Cell Biol. 151, 341-352; Wong, E. D., Wagner, J. A., Scott, S. V., Okreglak, V., Holewinske, T. J., Cassidy-Stone, A., and Nunnari, J. (2003) J. Cell Biol. 160, 303-311; Sesaki, H., Southard, S. M., Yaffe, M. P., and Jensen, R. E. (2003) Mol. Biol. Cell, in press). Mgm1 and its orthologs exist in two forms of different lengths. To obtain new insights into their biogenesis and function, we have characterized these isoforms. The large isoform (l-Mgm1) contains an N-terminal putative transmembrane segment that is absent in the short isoform (s-Mgm1). The large isoform is an integral inner membrane protein facing the intermembrane space. Furthermore, the conversion of l-Mgm1 into s-Mgm1 was found to be dependent on Pcp1 (Mdm37/YGR101w) a recently identified component essential for wild type mitochondrial morphology. Pcp1 is a homolog of Rhomboid, a serine protease known to be involved in intercellular signaling in Drosophila melanogaster, suggesting a function of Pcp1 in the proteolytic maturation process of Mgm1. Expression of s-Mgm1 can partially complement the Deltapcp1 phenotype. Expression of both isoforms but not of either isoform alone was able to partially complement the Deltamgm1 phenotype. Therefore, processing of l-Mgm1 by Pcp1 and the presence of both isoforms of Mgm1 appear crucial for wild type mitochondrial morphology and maintenance of mitochondrial DNA.  相似文献   

6.
Antiserum against a major cytochrome b peptide isolated from yeast mitochondria as described previously (Lin, L.-F.H., and Beattie, D.S., J. Biol. Chem. 1978, 253, 2412--2418) was raised in rabbits and shown to be monospecific against the pure antigen. Mitochondria were isolated from yeast cells grown in [3H]leucine, extracted with Lubrol and treated with antiserum to cytochrome b. Analysis of the immunoprecipitates by sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of a single major band of molecular weight 31 000 corresponding to cytochrome b. In order to determine the intracellular site of translation of cytochrome b, yeast cells were labeled in vivo under non-growing conditions with [3H]leucine in the absence or presence of inhibitors of cytoplasmic and mitochondrial protein synthesis. The incorporation of radioactive leucine into the apoprotein of cytochrome b isolated by immunoprecipitation followed by gel electrophoresis was insensitive to cycloheximide (an inhibitor of cytoplasmic protein synthesis) and sensitive to acriflavin, erythromycin, and chloramphenicol (inhibitors of mitochondrial protein synthesis). Furthermore, no cytochrome b apoprotein was present in a cytoplasmic petite mutant which lacked mitochondrial protein synthesis. Cytochrome b is thus a product of protein synthesis on mitochondrial ribosomes.  相似文献   

7.
P32 protein, also known as the gC1q receptor for complement component C1q, is a binding protein for nuclear pre-mRNA splicing factor SF2/ASF and numerous other nuclear and cell surface proteins, yet is targeted to the mitochondrial matrix compartment where these proteins are not present. In the present study, we use immunogold electron microscopy to evaluate the subcellular distribution of P32 protein (gC1q-R) in cultured cell lines and in rat tissues embedded in the acrylic resin LR Gold. Immunogold labeling of Raji lymphoma, CHO, human fibroblasts, HeLa and B-SC-1 cells shows reactivity primarily within mitochondria. Highly specific labeling of mitochondria is also obtained in rat tissues, including adrenal gland, cerebellum, cerebral cortex, heart, kidney, liver, pituitary, pancreas, skeletal muscle, spleen, testes and thyroid. However, strong P32 (gClq-R) reactivity is also present in (i) zymogen granules, condensing vacuoles, endoplasmic reticulum, and on the cell surface of pancreatic acinar cells, (ii) on the cell surface of microvascular endothelial cells in pancreas and kidney, (iii) on the cell surface and in nuclei of splenic lymphocytes, and (iv) in the acrosome of developing spermatids in testes. Western immunoblots show that the polyclonal antibody to P32 (gC1q-R) used in this study reacts specifically with a 32-kDa protein in both purified pancreatic zymogen granules and in mitochondria, and no other proteins are reactive. These results provide evidence that P32 (gC1q-R) is a mitochondrial protein that also localizes outside mitochondria in certain cells and tissues under normal physiological conditions.  相似文献   

8.
Purified sterol carrier protein2 (SCP2) from rat liver stimulated utilization of endogenous cholesterol for pregnenolone synthesis by adrenal mitochondria. Cytosolic preparations of rat liver, adrenal and luteinized ovary were also stimulatory in mitochondrial pregnenolone synthesis to different extents. Treatment of all preparations with rabbit anti-rat SCP2 IgG neutralized the stimulatory effects, and immunoprecipitated proteins gave similar patterns on SDS-gradient polyacrylamide gel electrophoresis. Treatment with rabbit pre-immune IgG had no effect on these parameters. Thus, proteins which are immunochemically compatible with hepatic SCP2 appear to be present in steroidogenic tissues and may play a role in control of mitochondrial cholesterol side chain cleavage activity.  相似文献   

9.
Most mitochondrial proteins are encoded in the nucleus and synthesized in the cytoplasm as larger precursors containing NH2-terminal 'leader' peptides. To test whether a leader peptide is sufficient to direct mitochondrial import, we fused the cloned nucleotide sequence encoding the leader peptide of the mitochondrial matrix enzyme ornithine transcarbamylase (OTC) with the sequence encoding the cytosolic enzyme dihydrofolate reductase (DHFR). The fused sequence, joined with SV40 regulatory elements, was introduced along with a selectable marker into a mutant CHO cell line devoid of endogenous DHFR. In stable transformants, the predicted 26-K chimeric precursor protein and two additional proteins, 22 K and 20 K, were detected by immunoprecipitation with anti-DHFR antiserum. In the presence of rhodamine 6G, an inhibitor of mitochondrial import, only the chimeric precursor was detected. Immunofluorescent staining of stably transformed cells with anti-DHFR antiserum produced a pattern characteristic of mitochondrial localization of immunoreactive material. When the chimeric precursor was synthesized in a cell-free system and incubated post-translationally with isolated rat liver mitochondria, it was imported and converted to a major product of 20 K that associated with mitochondria and was resistant to proteolytic digestion by externally added trypsin. Thus, both in intact cells and in vitro, a leader sequence is sufficient to direct the post-translational import of a chimeric precursor protein by mitochondria.  相似文献   

10.
Increased [3H]palmitate incorporation into specific cellular proteins has been reported to occur in Chinese hamster ovary (Wellner, R. B., Ray, B., Ghosh, P. C., and Wu, H. C. (1984) J. Biol. Chem. 259, 12788-12793) and yeast (Wen, D., and Schlesinger, M. J. (1984) Mol. Cell. Biol. 4, 688-694) mutant cells. In this paper we report studies concerning the relationship between N-linked oligosaccharide structure and [3H]palmitate incorporation into proteins of Chinese hamster ovary (CHO) cells. We have compared the incorporation of [3H]palmitate into proteins of wild-type and four different mutant CHO cell lines defective in various steps of N-linked protein glycosylation. Sodium dodecyl sulfate-gel electrophoretic analysis showed that three of the mutants exhibited increased [3H]palmitate incorporation into several CHO cellular proteins (approximately 30,000-38,000 molecular weight) as compared to the wild-type cells. One of the affected mutants which accumulates the Man5Gn2Asn intermediate structure was examined in detail. In agreement with earlier reports, virtually all of the [3H] palmitate-labeled proteins of both wild-type and mutant cell lines are membrane-bound. Pretreatment of the mutant cell line with tunicamycin blocked the increased [3H]palmitate incorporation into the two specific proteins (both of approximately 30,000 molecular weight) observed in untreated cells; the decreased incorporation of [3H]palmitate into the 30,000 molecular weight species was accompanied by a concomitant increase in the incorporation of [3H]palmitate into two proteins of approximately 20,000 molecular weight. Pretreatment of wild-type cells with tunicamycin also caused increased [3H]palmitate incorporation into the 20,000 molecular weight species. Endoglycosidase H treatment of [3H]palmitate-labeled extracts from the mutant cell line resulted in the disappearance of the heavily labeled 30,000 molecular weight species and the appearance of intensely labeled 20,000 molecular weight species. Pretreatment of the mutant cell line with either castanospermine or deoxynojirimycin reduced the [3H]palmitate incorporation in to the 30,000 molecular weight species increased in untreated cells, but did not cause increased [3H]palmitate incorporation into the 20,000 molecular weight species. Our results indicate that perturbation of N-linked oligosaccharide structure results in altered incorporation of [3H]palmitate into specific proteins in CHO cells.  相似文献   

11.
In the preceding paper (Ross, E., and Schatz, G. (1976) J. Biol. Chem. 251, 1991-1996) yeast cytochrome c1 was characterized as a 31,000 dalton polypeptide with a covalently bound heme group. In order to determine the site of translation of this heme-carrying polypeptide, yeast cells were labeled with [H]leu(be under the following conditions: (a) in the absence of inhibitors, (b) in the presence of acriflavin (an inhibitor of mitochondrial translation), or (c) in the presence of cycloheximide (an inhibitor of cytoplasmic translation). The incorporation of radioactivity into the hemeprotein was measured by immunoprecipitating it from mitochondrial extracts and analyzing it by dodecyl sulfate-polyacrylamide gel electrophoresis. Label was incorporated into the cytochrome c1 apoprotein only in the presence of acriflavin or in the absence of inhibitor, but not in the presence of cycloheximide. Cytochrome c1 is thus a cytoplasmic translation product. This conclusion was further supported by the demonstration that a cytolasmic petite mutant lacking mitochondrial protein synthesis still contained holocytochrome c1 that was indistinguishable from cytochrome c1 of wild type yeast with respect to molecular weight, absorption spectru, the presence of a covalently bound heme group, and antigenic properties. Cytochrome c1 in the mitochondria of the cytoplasmic petite mutant is firmly bound to the membrane, and its concentration approaches that typical of wild type mitochondria. However, its lability to proteolysis appeared to be increased. A mitochondrial translation product may thus be necessary for the correct conformation or orientation of cytochrome c1 in the mitochondrial inner membrane. Accumulation of cytochrome c1 protein in mitochondria is dependent on the abailability of heme. This was shown with a delta-aminolevulinic acid synthetase-deficient yeast mutant which lacks heme and any light-absorbing peaks attributable to cytochromes. Mitochondria from mutant cells grown without added delta-aminolevulinic acid contained at least 20 times less protein immunoprecipitable by cytochrome c1-antisera than mitochondria from cells grown in the presence of the heme precursor. Similarly, the respiration-deficient promitochondria of anaerobically grown wild type cells are almost completely devoid of material cross-reacting with cytochrome c1-antisera. A 105,000 X g supernatant of aerobically grown wild type cells contains a 29,000 dalton polypeptide that is precipitated by cytochrome c1-antiserum but not by nonimmune serum. This polypeptide is also present in high speed supernatants from the heme-deficient mutant or from anaerobically gorwn wild type cells. The possible identity of this polypeptide with soluble apocytochrome c1 is being investigated.  相似文献   

12.
A cDNA encoding 35-kDa peroxisome assembly factor 1 (PAF-1), a peroxisomal integral membrane protein, was cloned from Chinese hamster ovary (CHO) cells and sequenced. The CHO PAF-1 comprised 304 amino acids, one residue shorter than rat or human PAF-1, and showed high homology to rat and human PAF-1: 90 and 86% at the nucleotide sequence level and 92 and 90% in amino acid sequence, respectively. PAF-1 from these three species contains a conserved cysteine-rich sequence at the C-terminal region which is exactly the same as that of a novel cysteine-rich RING finger motif family. PAF-1 cDNA from a peroxisome-deficient CHO cell mutant, Z65 (T. Tsukamoto, S. Yokota, and Y. Fujiki, J. Cell Biol. 110:651-660, 1990), contained a nonsense mutation at the codon for Trp-114, resulting in premature termination. Truncation in PAF-1 of either 19 amino acids from the N terminus or 92 residues from the C terminus maintained the peroxisome assembly-restoring activity when tested in both the Z65 mutant and the fibroblasts from a Zellweger patient. In contrast, deletion of 27 or 102 residues from the N or C terminus eliminated the activity. PAF-1 is encoded by free polysomal RNA, consistent with a general rule for biogenesis of peroxisomal proteins, including membrane polypeptides, implying the posttranslational transport and integration of PAF-1 into peroxisomal membrane.  相似文献   

13.
Previously we purified a cytosolic factor that stimulates the import of the extrapeptide (the synthetic peptide of the presequence of ornithine aminotransferase) into the mitochondrial matrix (Ono, H., and Tuboi, S., 1988, J. Biol. Chem. 263, 3188-3193). In this work this cytosolic factor was shown also to stimulate the import of the precursors of ornithine aminotransferase, a large subunit of succinate dehydrogenase, and sulfite oxidase. The amounts of these precursors bound to the outer mitochondrial membrane were increased by this cytosolic factor, suggesting that the cytosolic factor participates in the recognition step in the import process of the precursor protein. When the cytosolic factor was applied to an ATP-agarose column, the import-stimulating activity was recovered entirely in the unadsorbed fraction. Immunochemical studies showed that in these conditions the 70-kDa heat shock-related protein (Hsp 70) was present exclusively in the fraction adsorbed to the ATP-agarose column. The cytosolic factor is thus different from the 70-kDa heat shock-related protein, which was identified as a factor required for the import of mitochondrial proteins in yeast. The cytosolic factor was also detected in the cytosol of rat liver cells, and a considerable amount of this factor was recovered from rat liver mitochondria by washing them with high salt buffer, suggesting that the cytosolic factor has affinity to the outer mitochondrial membrane and binds to its receptor on the membrane. From these results, we conclude that the cytosolic factor forms a complex with the precursor of mitochondrial protein and then this complex binds to the outer mitochondrial membrane, probably via the receptor of the cytosolic factor.  相似文献   

14.
Several inner membrane proteins from rat liver mitochondria have been translated for the first time in rabbit reticulocyte lysates. These include the Rieske iron-sulfur protein, cytochrome c1 and core protein I of the cytochrome bc1 complex, the alpha and beta subunits of F1 ATPase, and subunit IV of cytochrome oxidase. All were translated from free polysomes as larger-molecular-mass precursors, and were processed to their mature forms by isolated liver mitochondria or by the isolated mitochondrial matrix fraction. In vitro processing, catalyzed by the isolated matrix fraction, is inhibited by rhodamine 6G. The latter is a fluorescent probe, which accumulates specifically in mitochondria of whole cells and which is used extensively to visualize mitochondrial morphology. The concentration of rhodamine 6G required for inhibition in vitro is similar to that of o-phenanthroline. Rhodamine 6G inhibits matrix-catalyzed processing of all precursors tested, indicating that the mechanism of inhibition is common for a variety of functionally unrelated precursors. The novel action of rhodamine 6G reported here can form the basis for its inhibition of precursor processing in intact hepatoma cells [Kolarov, J. & Nelson, B.D. (1984) Eur. J. Biochem. 144, 387-392].  相似文献   

15.
The nuclear protein statin, detectable with specific monoclonal antibodies, is found mostly in nonproliferating cells (Wang, E. (1985) J. Cell Biol. 100, 545-551). In the rat liver a 57-kDa protein designated as rat liver protein 57 (RLp57) was recently identified to carry the epitope for the anti-statin-specific monoclonal antibody, S-44 (Sester, U., Moutsatsos, I. K., and Wang, E. (1989) Exp. Cell Res. 182, 550-558). To characterize further the RLp57 protein, in the present study a polyclonal antibody was raised to the RLp57 protein eluted from polyacrylamide gel. Similar to the anti-statin monoclonal antibody, this polyclonal antibody recognizes a nuclear antigen in nonproliferating fibroblasts and reacts with a 57-kDa protein in rat liver and nonproliferating cells strongly suggesting that RLp57 is a statin protein from rat liver. Two isoforms of RLp57 (isoelectric points between 6.5 and 7.0) were detected after two-dimensional gel electrophoresis and immunoblotting. RLp57 was purified using multiple chromatographic steps, including ion-exchange and affinity chromatography followed by chromatofocusing. These results show that RLp57, a statin protein found in liver, has two isoelectric variants and can be purified to apparent homogeneity by sequential steps of chromatographic procedures.  相似文献   

16.
The yeast F1F0-ATP synthase forms dimeric complexes in the mitochondrial inner membrane and in a manner that is supported by the F0-sector subunits, Su e and Su g. Furthermore, it has recently been demonstrated that the binding of the F1F0-ATPase natural inhibitor protein to purified bovine F1-sectors can promote their dimerization in solution (Cabezon, E., Arechaga, I., Jonathan P., Butler, G., and Walker J. E. (2000) J. Biol. Chem. 275, 28353-28355). It was unclear until now whether the binding of the inhibitor protein to the F1 domains contributes to the process of F1F0-ATP synthase dimerization in intact mitochondria. Here we have directly addressed the involvement of the yeast inhibitor protein, Inh1, and its known accessory proteins, Stf1 and Stf2, in the formation of the yeast F1F0-ATP synthase dimer. Using mitochondria isolated from null mutants deficient in Inh1, Stf1, and Stf2, we demonstrate that formation of the F(1)F(0)-ATP synthase dimers is not adversely affected by the absence of these proteins. Furthermore, we demonstrate that the F1F0-ATPase monomers present in su e null mutant mitochondria can be as effectively inhibited by Inh1, as its dimeric counterpart in wild-type mitochondria. We conclude that dimerization of the F1F0-ATP synthase complexes involves a physical interaction of the membrane-embedded F0 sectors from two monomeric complexes and in a manner that is independent of inhibitory activity of the Inh1 and accessory proteins.  相似文献   

17.
We have investigated the mechanism responsible for mitochondria permeabilization occurring during cell apoptosis. We have developed an in vivo model of apoptotic rat liver. Mitochondria appeared as an homogenous population in control liver. On the contrary, mitochondria varied in size, morphology, and the matrical density in apoptotic liver. Mitochondria were purified from control and apoptotic livers. In control conditions, a single mitochondrial population was identified; whereas three populations of mitochondria were purified from apoptotic liver. Our data show that these apoptotic populations correspond to early, intermediate, and late apoptotic mitochondria, which are characterized by an increasing extent of permeabilization of their outer membrane and a gradual enrichment in oligomerized Bax protein. Remarkably, a new ionic channel was observed in apoptotic but not in control mitochondria. The biophysical and pharmacological properties of this channel are in good agreement with those reported for a previously described mitochondrial apoptosis-induced channel (MAC) (Pavlov, E. V., Priault, M., Pietkiewicz, D., Cheng, E. H., Antonsson, B., Manon, S., Korsmeyer, S. J., Mannella, C. A., and Kinnally, K. W. (2001) J. Cell Biol. 155, 725-731). However, MAC activity was only observed in the late apoptotic mitochondrial population. Thus, our study establishes that MAC activity is related to the overall apoptotic process but corresponds to a late event.  相似文献   

18.
Properties of the permeability transition in VDAC1(-/-) mitochondria   总被引:4,自引:0,他引:4  
Opening of the permeability transition pore (PTP), a high-conductance mitochondrial channel, causes mitochondrial dysfunction with Ca2+ deregulation, ATP depletion, release of pyridine nucleotides and of mitochondrial apoptogenic proteins. Despite major efforts, the molecular nature of the PTP remains elusive. A compound library screening led to the identification of a novel high affinity PTP inhibitor (Ro 68-3400), which labeled a approximately 32 kDa protein that was identified as isoform 1 of the voltage-dependent anion channel (VDAC1) [A.M. Cesura, E. Pinard, R. Schubenel, V. Goetschy, A. Friedlein, H. Langen, P. Polcic, M.A. Forte, P. Bernardi, J.A. Kemp, The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J. Biol. Chem. 278 (2003) 49812-49818]. In order to assess the role of VDAC1 in PTP formation and activity, we have studied the properties of mitochondria from VDAC1(-/-) mice. The basic properties of the PTP in VDAC1(-/-) mitochondria were indistinguishable from those of strain-matched mitochondria from wild-type CD1 mice, including inhibition by Ro 68-3400, which labeled identical proteins of 32 kDa in both wild-type and VDAC1(-/-) mitochondria. The labeled protein could be separated from all VDAC isoforms. While these results do not allow to exclude that VDAC is part of the PTP, they suggest that VDAC is not the target for PTP inhibition by Ro 68-3400.  相似文献   

19.
Previously we showed that intact rat cytochrome P450 2E1, cytochrome P450 2B1 and truncated cytochrome P450 1A1 are targeted to mitochondria in rat tissues and COS cells. However, some reports suggest that truncated cytochrome P450 2E1 is targeted to mitochondria. In this study, we used a heterologous yeast system to ascertain the conservation of targeting mechanisms and the nature of mitochondria-targeted proteins. Mitochondrial integrity and purity were established using electron microscopy, and treatment with digitonin and protease. Full-length cytochrome P450 2E1 and cytochrome P450 2B1 were targeted both to microsomes and mitochondria, whereas truncated cytochrome P450 1A1 (+ 5 and + 33/cytochrome P450 1A1) were targeted to mitochondria. Inability to target intact cytochrome P450 1A1 was probably due to lack of cytosolic endoprotease activity in yeast cells. Mitochondrial targeting of cytochrome P450 2E1 was severely impaired in protein kinase A-deficient cells. Similarly, a phosphorylation site mutant cytochrome P450 2E1 (Ser129A) was poorly targeted to the mitochondria, thus confirming the importance of protein kinase A-mediated protein phosphorylation in mitochondrial targeting. Mitochondria-targeted proteins were localized in the matrix compartment peripherally associated with the inner membrane and their ethoxyresorufin O-dealkylation, erythromycin N-demethylase, benzoxyresorufin O-dealkylation and nitrosodimethylamine N-demethylase activities were fully supported by yeast mitochondrial ferredoxin and ferredoxin reductase.  相似文献   

20.
《The Journal of cell biology》1987,105(6):2713-2721
Acidification of endocytic compartments is necessary for the proper sorting and processing of many ligands and their receptors. Robbins and co-workers have obtained Chinese hamster ovary (CHO) cell mutants that are pleiotropically defective in endocytosis and deficient in ATP- dependent acidification of endosomes isolated by density centrifugation (Robbins, A. R., S. S. Peng, and J. L. Marshall. 1983. J. Cell Biol. 96:1064-1071; Robbins, A. R., C. Oliver, J. L. Bateman, S. S. Krag, C. J. Galloway, and I. Mellman. 1984. J. Cell Biol. 99:1296-1308). In this and the following paper (Yamashiro, D. J., and F. R. Maxfield. 1987. J. Cell Biol. 105:2723-2733) we describe detailed studies of endosome acidification in the mutant and wild-type CHO cells. Here we describe a new microspectrofluorometry method based on changes in fluorescein fluorescence when all cellular compartments are equilibrated to the same pH value. Using this method we measured the pH of endocytic compartments during the first minutes of endocytosis. We found in wild- type CHO cells that after 3 min, fluorescein-labeled dextran (F-Dex) was in endosomes having an average pH of 6.3. By 10 min, both F-Dex and fluorescein-labeled alpha 2-macroglobulin (F-alpha 2M) had reached acidic endosomes having an average pH of 6.0 or below. In contrast, endosome acidification in the CHO mutants DTG 1-5-4 and DTF 1-5-1 was markedly slowed. The average endosomal pH after 5 min was 6.7 in both mutant cell lines. At least 15 min was required for F-Dex and F-alpha 2M to reach an average pH of 6.0 in DTG 1-5-4. Acidification of early endocytic compartments is defective in the CHO mutants DTG 1-5-4 and DTF 1-5-1, but pH regulation of later compartments on both the recycling pathway and lysosomal pathway is nearly normal. The properties of the mutant cells suggest that proper functioning of pH regulatory mechanisms in early endocytic compartments is critical for many pH-mediated processes of endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号