首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Holyoak T  Nowak T 《Biochemistry》2001,40(37):11037-11047
The enzyme phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the reversible conversion of oxalacetate and GTP to phosphoenolpyruvate (PEP), GDP, and CO2. PEPCK from higher organisms is a monomer, specifically requires GTP or ITP, and uses Mn2+ as the activating cation. Currently, there is no crystal structure of GTP-utilizing PEPCKs. The conformation of the bound nucleotide was determined from transferred nuclear Overhauser effects (trnOe) experiments to determine internuclear proton distances. At 600 MHz in the presence of PEPCK, nOe effects were observed between nucleotide protons. Internuclear distances were calculated from the initial rate of the nOe buildup. These distance constraints were used in energy minimization calculations to determine the conformation of PEPCK-bound GTP. The bound nucleotide has the base oriented anti to the C2'-endo(2E) ribose ring conformation. Relaxation rate studies indicate that there is an additional relaxation effect on the C1' proton upon nucleotide binding to PEPCK. Nucleotide binding to PEPCK-Mn2+ was studied by 1H relaxation rate studies, but results were complicated by long dipole-dipole distances and the presence of competing complexes. Modification of PEPCK by iodoacetamido-TEMPO leads to an inactive enzyme that is spin-labeled at cys273. The interaction of TEMPO-PEPCK with GTP allows for the measurement of nuclear distances between GTP and the spin label. The results suggest that cys273 lies near the ribose ring of the bound nucleotide, but it is too far to be implicated in direct hydrogen bonding interactions consistent with previous results [Makinen, A. L., and Nowak, T. J. Biol. Chem. (1989) 264, 12148], suggesting that cys273 does not actively participate in catalysis. Modification of PEPCK with several cysteine specific modifying agents causes no change in the ability of the enzyme to bind nucleotide as monitored by fluorescence quenching. A correlation between the size of the modifying agent and the maximal observed quenching upon saturation of the enzyme with nucleotide is observed. This suggests a mechanism for inactivation of PEPCK by cysteine modification due to inhibition of a dynamic motion that may occur upon nucleotide binding.  相似文献   

2.
The active site of glutathione S-transferase isoenzyme 4-4, purified from rat liver, was studied by chemical modification. Tetrachloro-1,4-benzoquinone, a compound previously shown to inactivate glutathione S-transferases very efficiently by covalent binding in or close to the active site, completely prevented the alkylation of the enzyme by iodoacetamide, indicating that the reaction had taken place with cysteine residues. Both from radioactive labeling and spectral quantification experiments, evidence was obtained for the covalent binding of three benzoquinone molecules per subunit, i.e. equivalent to the number of cysteine residues present. This threefold binding was achieved with a fourfold molar excess of the benzoquinone, illustrating the high reactivity of this compound. Comparison of the number of amino acid residues modified by tetrachloro-1,4-benzoquinone with the decrease of catalytic activity revealed an almost complete inhibition after modification of one cysteine residue. Chemical modification studies with diethylpyrocarbonate indicated that all four histidine residues of the subunit are ethoxyformylated in an at least partially sequential manner. Modification of the second histidine residue resulted in complete loss of catalytic activity. Preincubation of the transferase with the glutathione conjugate of tetrachloro-1,4-benzoquinone resulted in 78% protection against this modification. However, glutathione itself hardly protected against the reaction with diethylpyrocarbonate. The intrinsic fluorescence properties of the enzyme were affected by covalent binding of tetrachloro-1,4-benzoquinone. The concentration dependency of the fluorescence quenching is strongly correlated with the inactivation of the enzyme, indicating that covalent binding of the benzoquinone occurs in the vicinity of at least one tryptophan residue. Finally, the binding of bilirubin, as measured by means of circular dichroism, was inhibited by preincubation of the enzyme with tetrachloro-1,4-benzoquinone in a manner which strongly correlated with the loss of enzymatic activity, the protection against inactivation by diethylpyrocarbonate, and the fluorescence quenching. All processes showed a 70-80% decrease after incubation of the enzyme with an equimolar amount of the benzoquinone. Thus, evidence is presented for the presence of a cysteine, a histidine and a tryptophan residue in, or in the vicinity of, the active site of the glutathione S-transferase 4 subunit.  相似文献   

3.
Mammalian phosphoenolpyruvate carboxykinase (PEPCK) specifically requires a guanosine or inosine nucleotide as a substrate; however, the structural basis for this nucleotide specificity is not yet known. Because affinity labels derived from guanosine have not yielded a stable, modified peptide in quantities sufficient for sequence analysis, we have investigated the utility of direct photochemical cross-linking of GTP to PEPCK in order to identify the nucleotide binding site. UV irradiation at a distance of 2 cm by a Mineralight lamp (330 microW/cm2) results in the attachment of [alpha-32P]GTP to PEPCK via a stable, covalent linkage in a reaction that is dependent upon GTP concentration and duration of irradiation. After 10 min of irradiation, more than 0.2 mol of [alpha-32P] GTP is incorporated per mole of PEPCK; under these conditions the GTP concentration required for half-maximal labeling is 69 microM. The substrates phosphoenolpyruvate, ITP, and GDP provide protection against photolabeling, as do Mn2+ and Mg2+. One major and one minor radioactive peptide derived from proteolytic digests of photolabeled PEPCK have been isolated and identified. The major modified peptide has been provisionally assigned to an acidic region near the C-terminus, and the minor peptide has been identified as Ser462-Lys471.  相似文献   

4.
Thiourea dioxide was used in chemical modification studies to identify functionally important amino acids in Escherichia coli CTP synthetase. Incubation at pH 8.0 in the absence of substrates led to rapid, time dependent, and irreversible inactivation of the enzyme. The second-order rate constant for inactivation was 0.18 M-1 s-1. Inactivation also occurred in the absence of oxygen and in the presence of catalase, thereby ruling out mixed-function oxidation/reduction as the mode of amino acid modification. Saturating concentrations of the substrates ATP and UTP, and the allosteric activator GTP prevented inactivation by thiourea dioxide, whereas saturating concentrations of glutamine (a substrate) did not. The concentration dependence of nucleotide protection revealed cooperative behavior with respect to individual nucleotides and with respect to various combinations of nucleotides. Mixtures of nucleotides afforded greater protection against inactivation than single nucleotides alone, and a combination of the substrates ATP and UTP provided the most protection. The Hill coefficient for nucleotide protection was approximately 2 for ATP, UTP, and GTP. In the presence of 1:1 ratios of ATP:UTP, ATP:GTP, and UTP:GTP, the Hill coefficient was approximately 4 in each case. Fluorescence and circular dichroism measurements indicated that modification by thiourea dioxide causes detectable changes in the structure of the protein. Modification with [14C]thiourea dioxide demonstrated that complete inactivation correlates with incorporation of 3 mol of [14C]thiourea dioxide per mole of CTP synthetase monomer. The specificity of thiourea dioxide for lysine residues indicates that one or more lysines are most likely involved in CTP synthetase activity. The data further indicate that nucleotide binding prevents access to these functionally important residues.  相似文献   

5.
Yeast hexokinase PII is rapidly inactivated (assayed at pH 8.0) by either butanedione in borate buffer or phenylglyoxal, reagents which are highly selective for the modification of arginyl residues. MgATP alone offers no protection against inactivation, consistent with low affinity of hexokinase for this nucleotide in the absence of sugar. Glucose provides slight protection against inactivation, while the combined presence of glucose and MgATP gives significant protection, suggesting that modified arginyl residues may lie at the active site, possibly serving to bind the anionic polyphosphate of the nucleotide in the ternary enzyme:sugar:nucleotide complex. Extrapolation to complete inactivation suggests that inactivation by butanedione correlates with the modification of 4.2 arginyl residues per subunit, and complete protection against inactivation by the combined presence of glucose and MgATP correlates with the protection of 2 to 3 arginyl residues per subunit. When the modified enzyme is assayed at pH 6.5, significant activity remains. However, modification by butanedione in borate buffer abolishes the burst-type slow transient process, observed when the enzyme is assayed at pH 6.5, to such an extent that after extensive modification the kinetic assays are characterized by a lag-type slow transient process. But even after extensive modification, hexokinase PII still demonstrates negative cooperativity with MgATP and is still strongly activated by citrate when assayed at pH 6.5.  相似文献   

6.
Bovine liver glutamate dehydrogenase reacts rapidly with 2,3-butanedione to yield modified enzyme with 29% of its original maximum activity, but no change in its Michaelis constants for substrates and coenzymes. No significant reduction in the inactivation rate is produced by the addition of the allosteric activator ADP or inhibitor GTP, while partial protection against inactivation is provided by the coenzyme NAD+ or substrate 2-oxoglutarate when added separately. The most marked decrease in the rate of inactivation (about 10-fold) is provided by the combined addition of NAD+ and 2-oxoglutarate, suggesting that modification takes place in the region of the active site. Reaction with 2,3-butanedione also results in loss of the ability of the enzyme to be activated by ADP. Addition of ADP (but not NAD+, 2-oxoglutarate or GTP) to the incubation mixture protects markedly against the loss of activatability of ADP. It is concluded that 2,3-butanedione produces two distinguishable effects on glutamate dehydrogenase: a relatively specific modification of the regulatory ADP site and a distinct modification in the active center. Reaction of two arginyl residues per peptide chain appears to be responsible for disruption of the ADP activation property of the enzyme, while alteration of a maximum of five arginyl residues can be related to the reduction of maximum catalytic activity. Electrostatic interactions between the positively charged arginine groups and the negatively charged substrate, coenzyme and allosteric purine nucleotide may be important for the normal function of glutamate dehydrogenase.  相似文献   

7.
J W Ogilvie 《Biochemistry》1983,22(25):5915-5921
The reaction of the fluorescent affinity label 5'-[p-(fluorosulfonyl)benzoyl]-1,N6-ethenoadenosine with rabbit skeletal muscle phosphofructokinase results in an inactivation of the enzyme and in the covalent incorporation of up to one label/monomer. The substrates, MgATP and fructose 6-phosphate, each protect against inactivation of the enzyme, but neither diminishes the extent of covalent incorporation of the label, indicating that the inactivation is not the result of covalent incorporation of the label. Dithiothreitol reactivates the inactivated enzyme but does not reduce the extent of incorporation of the label. A determination of the number of free sulfhydryl groups on the enzyme as a function of the extent of inactivation by the reagent suggests that the inactivation is associated with the loss of two free sulfhydryl groups per phosphofructokinase monomer. The inactivation reaction appears to involve the reversible formation of an enzyme-reagent complex (Kd = 1.11 mM) prior to the conversion of the complex to inactive enzyme (k1 = 0.98 min-1). In view of the protection afforded by either substrate and the evidence suggesting the formation of an enzyme-reagent complex prior to inactivation, it would appear that the inactivation results from a reagent-mediated formation of a disulfide bond between two cysteinyl residues in close proximity, possibly in or near the catalytic site of the enzyme. The site of covalent attachment of the label appears to be the binding site specific for the activating adenine nucleotides cAMP, AMP, and ADP. The extent of covalent incorporation of the label at this site is diminished in the presence of cAMP, and phosphofructokinase modified at this site by this affinity label is no longer subject to activation by cAMP.  相似文献   

8.
In order to understand the mechanism of decarboxylation by 2,3-dihydroxybenzoic acid decarboxylase, chemical modification studies were carried out. Specific modification of the amino acid residues with diethylpyrocarbonate, N-bromosuccinimide and N-ethylmaleiimide revealed that at least one residue each of histidine, tryptophan and cysteine were essential for the activity. Various substrate analogs which were potential inhibitors significantly protected the enzyme against inactivation. The modification of residues at low concentration of the reagents and the protection experiments suggested that these amino acid residues might be present at the active site. Studies also suggested that the carboxyl and ortho-hydroxyl groups of the substrate are essential for interaction with the enzyme.  相似文献   

9.
Two photoaffinity labeling agents, 8-azido-ATP and 8-azido-ADPglucose, are substrate site specific probes of the Escherichia coli ADPglucose synthetase. In the presence of light (254 nm), the analogs specifically and covalently modify the enzyme with concomitant loss of catalytic activity. The substrate ADPglucose completely protects the enzyme from covalent modification by these 8-azido analogs. ATP, another substrate, also provides nearly 100% protection from 8-azido-ATP inactivation but is less efficient in protection of inactivation by 8-azido-ADPglucose. In the absence of light, however, ADPglucose synthetase can utilize either 8-azido-ATP or 8-azido-ADPglucose as substrates.  相似文献   

10.
Modification of phosphoenolpyruvate carboxylase with o-phthalaldehyde (OPA) resulted in rapid and irreversible inactivation exhibiting biphasic reaction kinetics. The kinetic analysis and correlation of spectral changes with activity indicated that inactivation by OPA results from the modification of two lysine and two cysteine residues per subunit of the enzyme. PEP plus Mg2+ offered substantial protection against modification. Some of the effectors also gave appreciable protection against modification indicating that the residues may be located at or close to the active site. Thus, the results indicate formation of two isoindoles showing the proximity of the essential lysine and cysteine residues at the active site.  相似文献   

11.
C T Grubmeyer  W R Gray 《Biochemistry》1986,25(17):4778-4784
Salmonella typhimurium L-histidinol dehydrogenase (EC 1.1.1.23), a four-electron dehydrogenase, was inactivated by an active-site-directed modification reagent, 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-Cl). The inactivation followed pseudo-first-order kinetics and was prevented by low concentrations of the substrate L-histidinol or by the competitive inhibitors histamine and imidazole. The observed rate saturation kinetics for inactivation suggest that NBD-Cl binds to the enzyme noncovalently before covalent inactivation occurs. The UV spectrum of the inactivated enzyme showed a peak at 420 nm, indicative of sulfhydryl modification. Stoichiometry experiments indicated that full inactivation was correlated with modification of 1.5 sulfhydryl groups per subunit of enzyme. By use of a substrate protection scheme, it was shown that 0.5 sulfhydryl per enzyme subunit was neither protected against NBD-Cl modification by L-histidinol nor essential for activity. Modification of the additional 1.0 sulfhydryl caused complete loss of enzyme activity and was prevented by L-histidinol. Pepsin digestion of NBD-modified enzyme was used to prepare labeled peptides under conditions that prevented migration of the NBD group. HPLC purification of the peptides was monitored at 420 nm, which is highly selective for NBD-labeled cysteine residues. By amino acid sequencing of the major peptides, it was shown that the reagent modified primarily Cys-116 and Cys-377 and that the presence of L-histidinol gave significant protection of Cys-116. The presence of a cysteine residue in the histidinol binding site is consistent with models in which formation and subsequent oxidation of a thiohemiacetal occurs as an intermediate step in the overall reaction.  相似文献   

12.
We report crystal structures of the human enzyme phosphoenolpyruvate carboxykinase (PEPCK) with and without bound substrates. These structures are the first to be determined for a GTP-dependent PEPCK, and provide the first view of a novel GTP-binding site unique to the GTP-dependent PEPCK family. Three phenylalanine residues form the walls of the guanine-binding pocket on the enzyme's surface and, most surprisingly, one of the phenylalanine side-chains contributes to the enzyme's specificity for GTP. PEPCK catalyzes the rate-limiting step in the metabolic pathway that produces glucose from lactate and other precursors derived from the citric acid cycle. Because the gluconeogenic pathway contributes to the fasting hyperglycemia of type II diabetes, inhibitors of PEPCK may be useful in the treatment of diabetes.  相似文献   

13.
H S Ahn  M Foster  C Foster  E Sybertz  J N Wells 《Biochemistry》1991,30(27):6754-6760
Ca/calmodulin-sensitive cyclic nucleotide phosphodiesterase (CaM-PDE) is an important enzyme regulating cGMP levels and relaxation of vascular smooth muscle. This modification study was conducted mostly with bovine brain CaM-PDE to identify essential functional groups involved in catalysis. The effect of pH on Vmax/Km indicates two essential residues with pKa values of 6.4 and 8.2. Diethyl pyrocarbonate (DEP), a histidine-modifying agent, inhibits CaM-PDE with a second-order rate constant of 130 M-1 min-1 at pH 7.0 and 30 degrees C. Activity is restored by NH2OH. The pH dependence of inactivation reveals that the essential residue modified by DEP has an apparent pKa of 6.5. The difference spectrum of the intact and DEP-treated enzyme shows a maximum between 230 and 240 nm, suggesting formation of carbethoxy derivatives of histidine. The enzyme is also inactivated by N-ethylmaleimide (NEM) and 5,5'-dithiobis-(2-nitrobenzoic acid), both sulfhydryl-modifying agents, with the latter effect reversed by dithiothreitol, which suggests inactivation resulting from modification of cysteine residue(s). Partial inactivation of the enzyme by DEP or NEM results in an apparent decrease in the Vmax without a change in the Km or the extent of CaM stimulation. The rate of inactivation by DEP is greater in the presence than in the absence of Ca/CaM. A substrate analogue, Br-cGMP, and the competitive inhibitor 3-isobutyl-1-methylxanthine partially protect the enzyme against inactivation by DEP or NEM, suggesting that the modification of histidine and cysteine residues occurs at or near the active site. DEP also inactivated porcine brain CaM-PDE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Chalcone isomerase form soybean is inactivated by treatment with diethyl pyrocarbonate (DEP). The competitive inhibitor 4',4-dihydroxychalcone provides kinetic protection against inactivation by DEP with a binding constant at the site of protection in agreement with its binding constant at the active site. Very high concentrations of the competitive inhibitors 4',4-dihydroxychalcone or morin hydrate offer a 10- to 40-fold maximal protection, suggesting a second slower mechanism for inactivation which cannot be prevented by blockage of the active site. Blockage of the only cysteine residue in chalcone isomerase with p-mercuribenzoate does not affect the rate constant for DEP-dependent inactivation and indicates that the modification of the cysteine residue is not responsible for the activity loss observed in the presence of DEP. Treatment of inactivated enzyme with hydroxylamine does not restore catalytic activity, indicating that the modification of histidine or tyrosine residues is not responsible for the activity loss. All five histidines of chalcone isomerase are modified by DEP at pH 5.7 and ionic strength 1.0 M. The rate constant for the modification of the histidine residues of chalcone isomerase is close to that for the reaction of N-acetyl histidine with DEP, indicating that the histidine residues are quite accessible to the modifying reagent. The rate of histidine modification is the same in native enzyme, in urea-denatured enzyme, and in the presence of a competitive inhibitor. In the presence of the competitive inhibitor morin hydrate, all of the histidine residues of chalcone isomerase can be modified without significant loss in catalytic activity. These results demonstrate that the histidine residues of chalcone isomerase are not essential for catalysis and therefore cannot function as nucleophilic catalysts as previously proposed.  相似文献   

15.
"Suicide" inactivation of leukotriene (LT) A4 hydrolase/aminopeptidase occurs via an irreversible mechanism-based process which is saturable, of pseudo firstorder, and dependent upon catalysis. Data obtained with either recombinant enzyme or enzyme purified from human leukocytes were similar. Apparent binding constants and inactivation rate constants are equivalent, compatible with a single type of substrate-enzyme complex which partitions between two fates, turnover and inactivation. Both catalytic functions are inactivated, consistent with an overlapping active site for this bifunctional enzyme. The partition ratio (turnover/inactivation) for the LTA4-enzyme complex is 129 +/- 16 for LTA4 hydrolase activity and 124 +/- 10 for aminopeptidase activity. The pH dependence for turnover and inactivation are indistinguishable with a maximum at pH 8. L-Proline p-nitroanilide, a weak substrate with a high Km for the aminopeptidase affords only partial protection against inactivation by LTA4. However, two potent competitive inhibitors, bestatin and captopril, protect both catalytic processes from inactivation, consistent with an active-site specificity for the suicide event. Electrospray ionization mass spectrometry indicates that the molecular weight of pure recombinant enzyme is 69,399 +/- 4 and that covalent modification accompanies catalysis, producing an LTA4:enzyme adduct with a molecular weight 69,717 +/- 4 and a 1:1 stoichiometry. In agreement with kinetic data, electrospray ionization mass spectrometry shows that bestatin inhibits the covalent modification of enzyme by LTA4 and that the extent of modification is proportional to the loss of enzymatic activity.  相似文献   

16.
1. Mouse C4 lactate dehydrogenase treated in the dark with pyridoxal 5'-phosphate at pH8.7 and 25 degrees C loses activity gradually; 1mM-pyridoxal 5'-phosphate causes 83% inactivation, and higher concentrations of the reagent cause no further loss of activity. 2. The final extent of inactivation is very pH-dependent, greater inactivation occurring at the high pH values. 3. Inactivation may be fully reversed by addition of cysteine, or made permanent by reducing the enzyme with NaBH4. 4. The absorption spectrum of inactivated reduced enzyme indicates modification of lysine residues. Inactivation by 80% corresponds to modification of at least 1.8 mol of lysine/mol of enzyme subunit. 5. There is no loss of free thiol groups after inactivation with pyridoxal 5'-phosphate and reduction of the enzyme. 6. NAD+ or NADH gives complete protection against inactivation. protection studies with coenzyme fragments indicate that the AMP moiety is largely responsible for the protective effect. Lactate (10 mM) gives no protection in the absence of added nucleotides, but greatly enhances the protection given by ADP-ribose (1 mM). Thus ADP-ribose is able to trigger the binding of lactate. 7. Pyridoxal 5'-phosphate also acts as a non-covalent inhibitor of mouse C4 lactate dehydrogenase. The inhibition is non-competitive with respect to both NAD+ and lactate. 8. Km values for the enzyme at pH 8.0 and 25 degrees C, with the non-varied substrate saturating, are 0.3 mM-lactate and 5 microM-NAD+. 9. These results are discussed and compared with pyridoxal 5'-phosphate modification of other lactate dehydrogenase isoenzymes and related dehydrogenases.  相似文献   

17.
Rat liver cytosolic phosphoenolpyruvate carboxykinase is inactivated by incubation with 0.84 mM 5′-p-fluorosulfonylbenzoyl guanosine, but is not appreciably affected by the adenosine analogue, 5′-p-fluorosulfonylbenzoyl adenosine, in correspondance with the known nucleotide specificity of this enzyme. Marked protection against inactivation by 5′-p-fluorosulfonylbenzoyl guanosine is provided (either in the presence or absence of divalent metal cation) by GTP or GDP but not by ATP or phosphoenolpyruvate. The inactivation appears to be due to covalent reaction since radioactive reagent remains associated with the enzyme after extensive dialysis and gel filtration on Sephadex G-25. These results are consistent with affinity labeling of the nucleotide binding site of phosphoenolpyruvate carboxykinase by the guanosine nucleotide analogue 5′-p-fluorosulfonylbenzoyl guanosine.  相似文献   

18.
A new affinity label, 8-(4-bromo-2,3-dioxobutylthio)guanosine 5'-triphosphate (8-BDB-TGTP), has been synthesized by initial reaction of GTP to form 8-Br-GTP, followed by its conversion to 8-thio-GTP, and finally coupling with 1,4-dibromobutanedione to produce 8-BDB-TGTP. 8-BDB-TGTP and its synthetic intermediates were characterized by thin-layer chromatography, UV, (31)P NMR spectroscopy, as well as by bromide and phosphorus analysis. Escherichia coli adenylosuccinate synthetase is inactivated by 8-BDB-TGTP at pH 7.0 at 25 degrees C. Pretreatment of the enzyme with N-ethylmaleimide (NEM) blocks the exposed Cys(291) and leads to simple pseudo-first-order kinetics of inactivation. The inactivation exhibits a nonlinear relationship of initial inactivation rate versus 8-BDB-TGTP concentration, indicating the reversible association of 8-BDB-TGTP with the enzyme prior to the formation of a covalent bond. The inactivation kinetics exhibit an apparent K(I) of 115 microM and a k(max) of 0.0262 min(-1). Reaction of the NEM-treated adenylosuccinate synthetase with 8-BDB-[(3)H]TGTP results in 1 mol of reagent incorporated/mol of enzyme subunit. Adenylosuccinate or IMP plus GTP completely protects the enzyme against 8-BDB-TGTP inactivation, whereas IMP or GTP alone provide partial protection against inactivation. AMP is much less effective in protection. The results of ligand protection studies suggest that E. coli adenylosuccinate synthetase may accommodate 8-BDB-TGTP as a GTP analog. The new affinity label may be useful for identifying catalytic amino acid residues of protein proximal to the guanosine ring.  相似文献   

19.
The ATP analog 6-[(3-carboxy-4-nitrophenyl)thiol]-9-beta-D-ribofuranosylpurine 5'-triphosphate (Nbs6ITP) is slowly hydrolyzed at pH 7.4 by the (Na+ + K+)-ATPase, whereas it binds covalently at pH 8.5 and inhibits the enzyme irreversibly. Time courses of irreversible inhibition could only be fitted to a model in which the enzyme can exist in two slowly interchangeable states, one of which is enzymatically active and binds Nbs6ITP first reversibly and then covalently. Arguments that the covalent binding occurs at a low affinity nucleotide binding site are: (a) similarity of the Ki Nbs6ITP for the reversible and the irreversible inhibition and of K0.5 for ATP protection; (b) stoichiometry of covalent Nbs6ITP binding per alpha subunit of 0.8; and (c) change of complex substrate dependence of the enzyme to a Michaelis-Menten type after Nbs6ITP modification. This change in kinetics and the finding that the Nbs6ITP inactivation at a low affinity nucleotide binding site is increased by micromolar ADP concentrations indicates that the (Na+ + K+)-ATPase contains two different nucleotide binding sites. Since studies of nucleotide effects on enzyme inactivation by 5,5'-dithiobis(2-nitrobenzoic acid) did not confirm the hypothesis of an SH-group in a nucleotide binding site, Nbs6ITP may bind to another functional group, e.g. to an OH-group of tyrosine.  相似文献   

20.
Chemical modification of adenylosuccinate synthetase from Escherichia coli with phenylglyoxal resulted in an inhibition of enzyme activity with a second-order rate constant of 13.6 M-1 min-1. The substrates, GTP or IMP, partially protected the enzyme against inactivation by the chemical modification. The other substrate, aspartate, had no such effect even at a high concentration. In the presence of both IMP and GTP during the modification, nearly complete protection of the enzyme against inactivation was observed. Stoichiometry studies with [7-14C]phenylglyoxal showed that only 1 reactive arginine residue was modified by the chemical reagent and that this arginine residue could be shielded by GTP and IMP. Sequence analysis of tryptic peptides indicated that Arg147 is the site of phenylglyoxal chemical modification. This arginine has been changed to leucine by site-directed mutagenesis. The mutant enzyme (R147L) showed increased Michaelis constants for IMP and GTP relative to the wild-type system, whereas the Km for aspartate exhibited a modest decrease as compared with the native enzyme. In addition, kcat of the R147L mutant decreased by a factor of 1.3 x 10(4). On the bases of these observations, it is suggested that Arg147 is critical for enzyme catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号