首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alanopine dehydrogenase (AlDH) and three isoforms of strombine/alanopine dehydrogenase (St/AlDH) were purified from muscle tissue of the polychaete rockworm Marphysa sanguinea. The four enzymes, which can be distinguished by the isoelectric point, are monomeric 42 kDa proteins, possess similar pH-activity profiles, and display specificity for pyruvate and NAD(H). The three isoforms of St/AlDH show equivalent Km and Vmax for glycine and L-alanine and for D-strombine and meso-alanopine. Free amino acid levels in the muscle and D-strombine accumulation in vivo during muscle activity suggest that St/AlDHs function physiologically as StDH. AlDH shows specificity for L-alanine and meso-alanopine, but not for glycine or D-strombine. The amino acid sequences of AlDH and one of the St/AlDH isoforms were determined by a combination of amino acid sequence analysis and cDNA cloning. St/AlDH cDNA consisted of 1586 bp nucleotides that encode a 399-residue protein (43,346.70 Da), and AlDH cDNA consisted of 1587 bp nucleotides that encode a 399-residue protein (43,886.68 Da). The two amino acid sequences deduced from the cDNA displayed 67% amino acid identity, with greatest similarity to that of tauropine dehydrogenase from the polychaete Arabella iricolor.  相似文献   

2.
It has been shown in the experiments on rats that subcutaneous administration of central alpha-adrenoblockers IEM-611 (30 mg/kg and 15 mg/kg) and phenoxybenzamine (10 mg/kg) for one or two weeks brings about a decrease in voluntary ethanol consumption at early stages of experimental alcoholism (3-week alcoholization). In rats with chronic alcoholization for 6 months only IEM-611 had a remarkable inhibitory effect on alcohol consumption. Moreover, it has been stated that IEM-611 reduced threefold the activity of liver aldehyde dehydrogenase (AlDH) by the inhibition of AlDH isoenzymes with low and high Km for acetaldehyde. Phenoxybenzamine inhibited slightly only low Km AlDH. It is suggested that differences in IEM-611 and phenoxybenzamine effects may be associated with specific drug inhibition of AlDH isoenzymes.  相似文献   

3.
植物中来源于甘氨酸和丝氨酸的一碳单位转移给四氢叶酸用于四氢叶酸代谢物的生物合成.由于含量低、成份复杂以及稳定性差,植物组织中四氢叶酸代谢物和叶酸的定量分析一度是一个挑战性很强的课题.本研究旨在建立一种可靠方法测定对甲基基团要求不同的植物(例如累积甘氨酸甜菜碱的菠菜与不累积甘氨酸甜菜碱的拟南芥)中四氢叶酸代谢物和叶酸的含量,用于研究这些植物中通过叶酸途径的一碳单位通量.菠菜和拟南芥叶片在金色荧光灯下加液氮研磨,加入大鼠血浆轭合酶粗提物处理,提取物经叶酸结合蛋白琼脂糖亲和色谱柱纯化,用附有荧光和紫外检测器的高效液相色谱仪分离并测定四氢叶酸代谢物和叶酸的含量.菠菜和拟南芥叶片中单谷氨酸型N5-甲基四氢叶酸含量分别是252ng/g和64ng/g,而总N5-甲基四氢叶酸的含量分别是370ng/g和199ng/g.两种植物均检测到少量的四氢叶酸和N5-醛基四氢叶酸,但只在拟南芥叶片而非菠菜叶片中检测到叶酸.实验结果显示,菠菜中单谷氨酸型和多谷氨酸型N5-甲基四氢叶酸的含量均比拟南芥显著增多.这种样品制备和高效液相色谱方法适于测定植物中四氢叶酸代谢物和叶酸的含量.  相似文献   

4.
An unusual aldehyde dehydrogenase (AlDH) phenotype, histochemically similar to the "tumor-associated" AlDH appearing during rat hepatocarcinogenesis, was detected in normal rat upper gastrointestinal tract tissues. This phenotype is characterized by high activities with aromatic substrates, i.e., benzaldehyde (Bz) and NADP. Frozen sections of GI tract tissue from normal rats and from liver nodules induced by a Solt-Farber protocol were evaluated for AlDH activity. A sensitive, high-resolution procedure was used in which sections are pre-incubated in nitroblue tetrazolium and then incubated at 20 degrees C in a viscous polyvinyl alcohol medium containing buffer, phenazine methosulfate, sodium azide, substrate, co-enzyme, and nitroblue tetrazolium. Incubation at a suboptimal pH of 7.0 was found to improve retention of the final reaction product and the linearity with time. Activity was quantitated by computer-assisted microscopic photometry. Intense BzDH-NADP activity was localized in the squamous epithelium of the tongue, esophagus, and fore-stomach, and in the glandular pit cells of the glandular stomach; this activity was not evident in the submucosa, muscle walls, and vessels. Little if any BzDH-NADP activity was observed in the small or large intestine, pancreas, and liver. AlDH in upper GI tissues and in liver nodules shared three characteristics: a sharp localization; a preference for Bz and NADP compared to the aliphatic substrate acetaldehyde and NAD; and a high co-enzyme-independent activity in the presence of Bz.  相似文献   

5.
Hepatocarcinogenesis in rats treated with several chemicals is associated with changes in aldehyde dehydrogenase (AlDH) activity, particularly heterogeneous expression of a "tumor specific" phenotype that is very active with aromatic aldehydes, e.g., benzaldehyde (Bz). Objectives of this study were first, to determine if liver cancers in vinyl chloride-treated rats also expressed this AlDH phenotype, and second, to quantitate the NAD- and NADP-dependent AlDH activity for the substrates Bz and acetaldehyde (Ac) in the cancers and surrounding tissue. Small cubes of tissue containing well-differentiated hepatocellular carcinoma were obtained from five Sprague-Dawley rats exposed to 2500 ppm vinyl chloride for 55 weeks. An optimized procedure was developed for AlDH histochemistry. Frozen sections were preincubated in nitroblue tetrazolium/acetone and then incubated at 20 degrees C in viscous polyvinyl alcohol media containing buffer, phenazine methosulfate, sodium azide, substrate, coenzyme, and nitroblue tetrazolium. Background activity was evaluated by omission of substrate. Activity was quantitated by computer-assisted microscopic photometry. All five carcinomas had heterogeneous staining of NADP- and NAD-dependent BzDH and AcDH activity, with clusters of very high-activity cells. The magnitude of staining in the high-activity neoplastic cells was at least tenfold greater for BzDH-NADP and about twofold greater for BzDH-NAD, AcDH-NADP, and AcDH-NAD than the staining in other liver cells. More neoplastic cells had high BzDH than high AcDH activity. Only BzDH-NADP was localized predominantly to the carcinoma.  相似文献   

6.
When Lemna minor was cultured in the presence of 0.25 mM l-lysine, the concentration of free methionine and formyl and methyl tetrahydrofolate (THFA) were decreased. l-lysine, l-homoserine, l-threonine and l-methionine at concentrations up to 8 mM did not affect N10-formyl THFA synthetase (E.C. 6.3.4.3) and N5,N10-methylene THFA reductase (E.C. 1.1.1.68). In contrast, serine hydroxymethyltransferase (E.C. 2.1.2.1) activity was inhibited by lysine. This inhibition gave a sigmoidal curve when plotted for a range of l-lysine or THFA concentrations. Exogenous lysine also reduced the incorporation of glycine [14C] and serine [3-14C] into free and protein methionine. Lysine, which is known to control synthesis of homocysteine in L. minor, may also regulate production of C-1 units for methionine synthesis by inhibition of serine hydroxymethyltransferase.  相似文献   

7.
In vivo susceptibility of mitochondrial (m)- and soluble (s)-aldehyde dehydrogenase (AlDH) and aldehyde reductase (AIR) to three compounds, i.e., pargyline, diethylmaleate and disulfiram in rat brain was studied. In all experiments using the compounds tested, m-AlDH was more significantly inhibited when the low concentration of the substrate (50 μM) was used, as compared with the inhibition of the enzyme in use of high substrate concentration (3.3 mM). Under same condition, little or no inhibition of s-AlDH and AIR was observed. These findings strongly suggest that there are at least two forms of AlDH with different Kms and they have different susceptibility to AlDH inhibitors.  相似文献   

8.
White rats were divided into water-preferring (WP) and ethanol-preferring (EP) groups, on the basis of their preferable drink: either water or 15% solution of ethanol. Each of these groups was then subdivided into groups which were given to drink for 1 year 15% solution of ethanol (ethanol-treated) or water (controls). Alcohol dehydrogenase/aldehyde dehydrogenase activity ratios (ADH/AlDH) in livers of WP controls were considerably higher than those in EP controls. The difference in ADH/AlDH has somewhat decreased after ethanol treatment. However, this ratio remained the highest in the WP alcohol-treated group. The signs of proteinic and lipid dystrophy of the liver in alcohol-treated WP rats were expressed much more clearly than in all other groups. It is concluded that in the liver of animals with a high ADH/AlDH ratio there are favourable conditions for accumulation of a toxic hepatocyte-damaging acetaldehyde.  相似文献   

9.
An organism tentatively identified as Ralstonia eutropha was isolated from enrichment cultures containing tetrahydrofurfuryl alcohol (THFA) as the sole source of carbon and energy. The strain was able to tolerate up to 200 mM THFA in mineral salt medium. The degradation was initiated by an inducible ferricyanide-dependent alcohol dehydrogenase (ADH) which was detected in the soluble fraction of cell extracts. The enzyme catalyzed the oxidation of THFA to the corresponding tetrahydrofuran-2-carboxylic acid. Studies with n-pentanol as the substrate revealed that the corresponding aldehyde was released as a free intermediate. The enzyme was purified 211-fold to apparent homogeneity and could be identified as a quinohemoprotein containing one pyrroloquinoline quinone and one covalently bound heme c per monomer. It was a monomer of 73 kDa and had an isoelectric point of 9.1. A broad substrate spectrum was obtained for the enzyme, which converted different primary alcohols, starting from C2 compounds, secondary alcohols, diols, polyethylene glycol 6000, and aldehydes, including formaldehyde. A sequence identity of 65% with a quinohemoprotein ADH from Comamonas testosteroni was found by comparing 36 N-terminal amino acids. The ferricyanide-dependent ADH activity was induced during growth on different alcohols except ethanol. In addition to this activity, an NAD-dependent ADH was present depending on the alcohol used as the carbon source.  相似文献   

10.
The self-association in aqueous solution of folic acid (FA), 7,8-dihydrofolic acid (DHFA) and 5,6,7,8-tetrahydrofolic acid (THFA) has been studied by the use of proton magnetic resonance (1H NMR) spectroscopy. At concentrations below 10 mM, all three folates exist in (monomer)2 in equilibrium dimer equilibria with association constants (Ka) equal to 400, 66 and 14 M-1 for FA, DHFA and THFA respectively. These values decreased markedly to 157, 18 and 3 M-1, for FA, DHFA and THFA respectively, in the presence of 0.8 M KCl. The high extent of dimerization of FA is believed to impede the interaction with the active site of dihydrofolate reductase (DHFR) rendering it a poor substrate. In contrast, the DHFA with a much lower Ka is a better substrate. Conditions that lower the Ka of both FA and DHFA, (i.e., 0.8M KCl) turn them into better substrates. Based on the findings of the present study, it is also predicted that dihydro MTX may be a better inhibitor of DHFR than MTX.  相似文献   

11.
We measured the activities of the main alcohol-metabolizing enzymes (alcohol dehydrogenase, AlDH, and aldehyde dehydrogenase, AdhDH) in the blood serum, comparing these indices with the contents of ethanol and its main metabolite, acetaldehyde (AcAdh), in the blood, and also measured the contents of catecholamines (adrenaline, noradrenaline, and dopamine) in the blood and in different brain structures (hypothalamus, midbrain, and neocortex) of rats in the states of acute alcohol intoxication and chronic alcohol addiction. It was shown that, because of dissimilar changes in the activities of AlDH and AdhDH under conditions of alcohol intoxication, the dynamic balance between endogenous ethanol and AcAdh existing in the norm is disturbed, which results in an increase in the level of AcAdh. Such a phenomenon probably is one of the crucial factors underlying the development of alcohol addiction.  相似文献   

12.
Figures 6a and 6b and Table 2 show the united pattern of possible pathways of THFA biosynthesis with the substrates and the enzymes involved. With substrate selection ten different individual enzyme activities can be distinguished, but A2′ is identical with A2, and their apparent molecular weight is 28,000 daltons ±7%, and similarly c1–4 are the same enzymes with an apparent molecular weight of 40,000 daltons ±5% (Tóth-Martinez et al., 1974a). The identity of these enzymes has preliminary been shown, and construction of the THFA-MEC model was partly based on these findings.So, no distinction can be made among functioning MEC-es. The different pathways, mentioned in the introductory part of this paper, can be a product of the separated study of the individual enzymic steps of DHFA (THFA) biosynthesis. By all means it is an important approach to understand the dynamics of the integrated process what we tentatively suggest in this paper for further elucidation.  相似文献   

13.
Kharchenko  N. K. 《Neurophysiology》2000,32(5):312-320
We studied in rats the effects of peroral glycine introduction on the contents of catecholamines (CA) – noradrenaline (NA) and dopamine (DA) – in different brain structures (hypothalamus, midbrain, and neocortex), as well as the levels of adrenaline (A), NA, and DA in the blood and the activity of alcohol-metabolizing (AlM) enzymes – alcohol dehydrogenase (AlDH) and aldehyde dehydrogenase (AdhDH) – in the blood serum. The experimental group included animals with a disposition to alcohol consumption under conditions of free choice for drinking between an alcohol solution and water. The measurements were performed in animals in the state of acute alcohol intoxication (i.p. injection of 4 g/kg ethanol) or chronic alcohol addiction (formed due to a 3-month-long free access to ethanol solution). Introduction of 150 mg/kg glycine increased the NA and DA contents (the latter, to a lesser extent) in all examined brain structures; the NA level in the blood increased, while that of DA decreased. Under conditions of acute alcohol intoxication and chronic alcohol addiction, the ratio of the activities of AlM enzymes, AdhDH/AlDH, was significantly shifted toward values indicative of accumulation of acetaldehyde (AcAdh) in the tissues. This was accompanied by noticeable modifications of the CA contents in the brain structures and blood of the rats; in particular, the [DA]/[NA] ratio in the brain significantly increased. Introduction of glycine under conditions of acute alcohol intoxication provided normalization of the AdhDH/AlDH activity ratio. Obvious trends toward normalization of the CA levels in the brain structures were also observed in both acute and chronic experiments. In the latter case, the glycine treatment course resulted in a drop in the daily alcohol consumption by the animals. We conclude that glycine, which binds AcAdh and modifies the metabolism of CA transmitters, exerts a significant corrective influence on the pathogenetic mechanisms of alcohol addiction. Our experimental findings demonstrate that there are contact points between the acetaldehyde and catecholamine hypotheses of pathogenesis of alcoholism.  相似文献   

14.
Exposure of deaerated folic acid solutions containing an electron donor to UV radiation (310–390 nm, I = 0.4 W m−2) induced formation of dihydrofolic acid (DHFA), a photoexcitation which gave tetrahydrofolic acid (THFA). Only DHFA was formed in the presence of EDTA (Eo = +0.40 V), while the presence of stronger reductants—NADH (Eo = −0.32 V) and boron hydride (Eo = −0.48 V)—induced photoreduction to THFA. It was demonstrated that UV radiation had no effect on the THFA formylation, giving the coenzyme 5,10-methenyltetrahydrofolic acid and its transformation into another coenzyme, 5-formyltetrahydrofolic acid.  相似文献   

15.
Glycine decarboxylation and serine synthesis were investigatedto account for photorespiratory CO2 evolution in higher plants.Glycine decarboxylase in leaf mitochondria was found to splitglycine into CO2, NH3 and a C1 unit. Free glyoxylic acid wasnot involved in this process as an intermediate. Serine synthesiswas closely related to decarboxylation of glycine. We inferredthat serine is formed from two molecules of glycine by the combinedaction of glcine decarboxylase and serine hydroxymethyltransferase.Glycine decarboxylation and serine synthesis were stimulatedby NAD, PALP and THFA, and were inhibited by detergents, lipase,sonication, mechanical treatment, thyroxine and thiol compounds,suggesting the importance of structural intactness of the mitochondrialmembrane system. Glycine decarboxylase was present in intacttissues in quantities consistent with glycolate production duringphotosynthesis. We concluded that glycine decarboxylase in mitochondriais principally responsible for CO2 evolution in photorespiration.A control mechanism of photorespiration is discussed based onthe stimulation of glycine decarboxylase by NAD and on inhibitionby NADH. 1 A part of this work was presented at the Annual Meeting (April,1969) of the Japanese Society of Plant Physiologists, Kanazawa,and at the annual Meeting (April, 1970) of the Japanese AgricultualChemical Society, Fukuoka. (Received August 3, 1970; )  相似文献   

16.
We studied DNA dodecamers (CAG)4, (CCG)4, (CGG)4 and (CTG)4by CD spectroscopy and polyacrylamide gel electrophoresis. Each dodecamer adopted several ordered conformers which denatured in a cooperative way. Stability of the conformers depended on the dodecamer concentration, ionic strength, temperature and pH. The dodecamers, having a pyrimidine base in the triplet center, generated foldbacks at low ionic strength whose stem conformations were governed by the GC pairs. At high salt, (CCG)4 isomerized into a peculiar association of two strands. The association was also promoted by high oligonucleotide concentrations. No similar behavior was exhibited by (CTG)4. At low salt, (CGG)4 coexisted in two bimolecular conformers whose populations were strongly dependent on the ionic strength. In addition, (CGG)4 associated into a tetraplex at acidic pH. A tetraplex was even observed at neutral pH if the (CGG)4 concentration was sufficiently high. (CAG)4 was very stable in a monomolecular conformer similar to the known extremely stable foldback of the (GCGAAGC) heptamer. Nevertheless, even this very stable conformer disappeared if (CTG)4 was added to the solution of (CAG)4. Association of the complementary strands was also strongly preferred to the particular strand conformations by the other couple, (CCG)4 and (CGG)4.  相似文献   

17.
In the present study, we examined the possible interaction between Rab4 and syntaxin 4, both having been implicated in insulin-induced GLUT4 translocation. Rab4 and syntaxin 4 were coimmunoprecipitated from the lysates of electrically permeabilized rat adipocytes. The interaction between the two proteins was reduced by insulin treatment and increased by the addition of guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). An in vitro binding assay revealed that the bacterially expressed Rab4 was bound to a glutathione S-transferase fusion protein containing the cytoplasmic domain of syntaxin 4 (GST-syntaxin 4-(1-273)) but not to syntaxin 1A or vesicle-associated membrane protein-2. The interaction between Rab4 and syntaxin 4 seemed to be regulated by the guanine nucleotide status of Rab4, because 1) GTPgammaS treatment of the cells significantly increased, but guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS) treatment decreased the amount of Rab4 pulled down with GST-syntaxin 4-(1-273) from the cell lysates; 2) GTPgammaS loading on Rab4 caused a marked increase in the affinity of Rab4 to syntaxin 4 whereas GDPbetaS loading had little effect; and 3) a GTPase-deficient mutant of Rab4 (Rab4(Q67L)), but not a GTP-binding-defective mutant (Rab4(S22N)), was bound to GST-syntaxin 4-(1-273). Although insulin stimulated [gamma-(32)P]GTP binding to Rab4 in a time-dependent fashion, its effect on the Rab4 interaction with syntaxin 4 was apparently biphasic; an initial increase in Rab4 associated with syntaxin 4 was followed by a gradual dissociation of the GTPase from syntaxin 4. Finally, the binding of Rab4(Q67L) to GST-syntaxin 4-(1-273) was inhibited by munc-18c in a dose-dependent manner, indicating that GTP-loaded Rab4 binds to syntaxin 4 in the open conformation. These results suggest that 1) Rab4 interacts with syntaxin 4 in a direct and specific manner, and 2) the interaction is regulated by the guanine nucleotide status of Rab4 as well as by the conformational status of syntaxin 4.  相似文献   

18.
Oligonucleotides containing 8-aza-7-deaza-2'-deoxyisoguanosine (4) were investigated regarding their self-assembly in aqueous solution. The aggregation of 4 was compared with that of oligonucleotides containing 2'-deoxyisoguanosine (2b) and 2'-deoxyguanosine (1b). For this purpose the phosphoramidite of 4 was synthesized which was protected by a dibutylaminomethylidene residue at the amino group and a diphenylcarbamoyl residue at the 2-oxo function. Solid-phase synthesis furnished oligonucleotide containing short runs of the nucleoside 4. The self-assembly of the oligonucleotide 5'-d(T(4)4(4)T2) was studied by ion-exchange chromatography. The formation of a pentaplex was observed in the presence of Cs+, while a tetraplex is formed when the counter ion is Na+ or Rb+. The cation selectivity of the oligonucleotide 5'-d(T(4)4(4)T2) was found to be different from the parent 5'-d(T(4)isoG(4)T2) which was forming the tetraplex as well as a pentaplex in aq RbCl solution.  相似文献   

19.
In the presence of K(+), addition of ATP or ethanol to yeast mitochondria triggers the depletion of the transmembrane potential (DeltaPsi) and this is prevented by millimolar concentrations of phosphate (PO(4)). Different monovalent and polyvalent anions were tested for their protective effects on mitochondria from Saccharomyces cerevisiae. Only arsenate (AsO(4)) and sulfate (SO(4)) were as efficient as PO(4) to protect mitochondria against the K(+) mediated swelling, depletion of the DeltaPsi, and decrease in the ratio of uncoupled state to state 4 respiration rates. Protection by PO(4), SO(4) or AsO(4) was inhibited by mersalyl, suggesting that these anions interact with a site located in the matrix side. In addition, the effects of SO(4) and AsO(4) on the F(1)F(0)-ATPase were tested: both SO(4) and AsO(4) inhibited the synthesis of ATP following competitive kinetics against PO(4) and non-competitive kinetics against ADP. The mersalyl sensitive uptake of (32)PO(4) was not inhibited by SO(4) or AsO(4), suggesting that the synthesis of ATP was inhibited at the F(1)F(0)-ATPase. The hydrolysis of ATP was not inhibited, only a stimulation was observed when AsO(4) or sulfite (SO(3)) were added. It is suggested that the structure and charge similarities of PO(4), AsO(4) and SO(4) result in undiscriminated binding to at least two sites located in the mitochondrial matrix: at one site, occupation by any of these three anions results in protection against uncoupling by K(+); at the second site, in the F(1)F(0)-ATPase, AsO(4) and SO(4) compete for binding against PO(4) leading to inhibition of the synthesis of ATP.  相似文献   

20.
Leukotriene B(4) (LTB(4)) is a lipid mediator that plays an important role in inflammation. Metabolism of LTB(4) by cytochrome P450 (CYP) enzymes belonging to the CYP4F subfamily is considered to be of importance for the regulation of inflammation. This study investigates LTB(4) metabolism by recombinant rat CYP4F5 and CYP4F6 expressed in a yeast system and by microsomes isolated from rat organs expressing CYP4F mRNA. CYP4F6 was found to convert LTB(4) into 19-hydoxy- and 18-hydroxy-LTB(4) with an apparent K(m) of 26 microM, and CYP4F5 was found to convert LTB(4) primarily into 18-hydroxy-LTB(4) with an apparent K(m) of 9.7 microM. The rate of formation of 18-hydroxy-LTB(4) by CYP4F5 was surprisingly high. At a substrate concentration of 30 microM, the rate of formation was about 15 nmol/min/mg microsomal protein, approximately 30 times faster than the reaction catalyzed by CYP4F6. Analysis of LTB(4) metabolism by microsomes isolated from various tissues from the rat suggests that CYP4F5 and CYP4F6 are active in the lung and to some extent in the brain, kidney, and testis. CYP4F5 and CYP4F6, due to their capacities to metabolize LTB(4), may play important roles in modulating inflammatory response in these organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号