首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant cell walls are comprised of cellulose and hemicellulose and other polymers that are intertwined, and this complex structure presents a barrier to degradation by pure cellulases or hemicellulases. In this study, we determined the synergistic effects on corn cell wall degradation by the action of cellulosomal xylanase XynA and cellulosomal cellulases from Clostridium cellulovorans. XynA minicellulosomes and cellulase minicellulosomes were found to degrade corn cell walls synergistically but not purified substrates such as xylan and crystalline cellulose. The mixture of XynA and cellulases at a molar ratio of 1:2 showed the highest synergistic effect of 1.6 on corn cell wall degradation. The amounts both of xylooligosaccharides and cellooligosaccharides liberated from corn cell walls were increased by the synergistic action of XynA and cellulases. Although synergistic effects on corn cell wall degradation were found in simultaneous reactions with XynA and cellulases, no synergistic effects were observed in sequential reactions. The possible mechanism of synergism between XynA and cellulases is discussed.  相似文献   

2.
Clostridium cellulovorans, an anaerobic bacterium, produces a small nonenzymatic protein called HbpA, which has a surface layer homology domain and a type I cohesin domain similar to those found in the cellulosomal scaffolding protein CbpA. In this study, we demonstrated that HbpA could bind to cell wall fragments from C. cellulovorans and insoluble polysaccharides and form a complex with cellulosomal cellulases endoglucanase B (EngB) and endoglucanase L (EngL). Synergistic degradative action of the cellulosomal cellulase and HbpA complexes was demonstrated on acid-swollen cellulose, Avicel, and corn fiber. We propose that HbpA functions to bind dockerin-containing cellulosomal enzymes to the cell surface and complements the activity of cellulosomes.  相似文献   

3.
The cellulosomal family 9 cellulase genes engH, engK, engL, engM, and engY of Clostridium cellulovorans have been cloned and sequenced. We compared the enzyme activity of family 9 cellulosomal cellulases from C. cellulovorans and their derivatives. EngH has the highest activity toward soluble cellulose derivatives such as carboxymethylcellulose (CMC) as well as insoluble cellulose such as acid-swollen cellulose (ASC). EngK has high activity toward insoluble cellulose such as ASC and Avicel. The results of thin-layer chromatography showed that the cleavage products of family 9 cellulases were varied. These results indicated that family 9 endoglucanases possess different modes of attacking substrates and produce varied products. To investigate the functions of the carbohydrate-binding module (CBM) and the catalytic module, truncated derivatives of EngK, EngH, and EngY were constructed and characterized. EngHΔCBM and EngYΔCBM devoid of the CBM lost activity toward all substrates including CMC. EngKΔCBM and EngMΔCBM did not lose activity toward CMC but lost activity toward Avicel. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity.  相似文献   

4.
Jeon SD  Yu KO  Kim SW  Han SO 《New biotechnology》2012,29(3):365-371
Clostridium cellulovorans produces an efficient enzyme complex for the degradation of lignocellulosic biomass. In our previous study, we detected and identified protein spots that interacted with a fluorescently labeled cohesin biomarker via two-dimensional gel electrophoresis. One novel, putative cellulosomal protein (referred to as endoglucanase Z) contains a catalytic module from the glycosyl hydrolase family (GH9) and demonstrated higher levels of expression than other cellulosomal cellulases in Avicel-containing cultures. Purified EngZ had optimal activity at pH 7.0, 40°C, and the major hydrolysis product from the cellooligosaccharides was cellobiose. EngZ's specific activity toward crystalline cellulose (Avicel and acid-swollen cellulose) was 10-20-fold higher than other cellulosomal cellulase activities. A large percentage of the reducing ends that were produced by this enzyme from acid-swollen cellulose were released as soluble sugar. EngZ has the capability of reducing the viscosity of Avicel at an intermediate-level between exo- and endo-typing cellulases, suggesting that it is a processive endoglucanase. In conclusion, EngZ was highly expressed in cellulolytic systems and demonstrated processive endoglucanase activity, suggesting that it plays a major role in the hydrolysis of crystalline cellulose and acts as a cellulosomal enzyme in C. cellulovorans.  相似文献   

5.
The cellulosome of Clostridium cellulovorans consists of three major subunits: CbpA, EngE, and ExgS. The C. cellulovorans scaffolding protein (CbpA) contains nine hydrophobic repeated domains (cohesins) for the binding of enzymatic subunits. Cohesin domains are quite homologous, but there are some questions regarding their binding specificity because some of the domains have regions of low-level sequence similarity. Two cohesins which exhibit 60% sequence similarity were investigated for their ability to bind cellulosomal enzymes. Cohesin 1 (Coh1) was found to contain amino acid residues corresponding to amino acids 312 to 453 of CbpA, which contains a total of 1,848 amino acid residues. Coh6 was determined to contain amino acid residues corresponding to residues 1113 to 1254 of CbpA. By genetic construction, these two cohesins were each fused to MalE, producing MalE-Coh1 and MalE-Coh6. The abilities of two fusion proteins to bind to EngE, ExgS, and CbpA were compared. Although MalE-Coh6 could bind EngE and ExgS, little or no binding of the enzymatic subunits was observed with MalE-Coh1. Significantly, the abilities of the two fusion proteins to bind CbpA were similar. The binding of dockerin-containing enzymes to cohesin-containing proteins was suggested as a model for assembly of cellulosomes. In our examination of the role of dockerins, it was also shown that the binding of endoglucanase B (EngB) to CbpA was dependent on the presence of EngB's dockerin. These results suggest that different cohesins may function with differing efficiency and specificity, that cohesins may play some role in the formation of polycellulosomes through Coh-CbpA interactions, and that dockerins play an important role during the interaction of cellulosomal enzymes and cohesins present in CbpA.  相似文献   

6.
This paper reviews the properties of the cellulosome and noncellulosome cellulases produced by Clostridium cellulovorans, an anaerobic, mesophilic, spore-forming microorganism that produces copious amounts of cellulase. The three major subunits of the cellulosome, CbpA, exoglucanase S (ExgS), and P100, are described, as well as the properties of the functional domains of CbpA. The properties of two noncellulosomal endoglucanases, EngD and EngF, are compared. The functions of the cellulose-binding domain (CBD) of CbpA indicate its potential uses in biotechnology. Received: November 18, 1997 / Accepted: November 26, 1997  相似文献   

7.
8.
Han SO  Yukawa H  Inui M  Doi RH 《Journal of bacteriology》2003,185(20):6067-6075
The regulation of expression of the genes encoding the cellulases and hemicellulases of Clostridium cellulovorans was studied at the mRNA level with cells grown under various culture conditions. A basic pattern of gene expression and of relative expression levels was obtained from cells grown in media containing poly-, di- or monomeric sugars. The cellulase (cbpA and engE) and hemicellulase (xynA) genes were coordinately expressed in medium containing cellobiose or cellulose. Growth in the presence of cellulose, xylan, and pectin gave rise to abundant expression of most genes (cbpA-exgS, engH, hbpA, manA, engM, engE, xynA, and/or pelA) studied. Moderate expression of cbpA, engH, manA, engE, and xynA was observed when cellobiose or fructose was used as the carbon source. Low levels of mRNA from cbpA, manA, engE, and xynA were observed with cells grown in lactose, mannose, and locust bean gum, and very little or no expression of cbpA, engH, manA, engE, and xynA was detected in glucose-, galactose-, maltose-, and sucrose-grown cells. The cbpA-exgS and engE genes were most frequently expressed under all conditions studied, whereas expression of xynA and pelA was more specifically induced at higher levels in xylan- or pectin-containing medium, respectively. Expression of the genes (cbpA, hbpA, manA, engM, and engE) was not observed in the presence of most soluble di- or monosaccharides such as glucose. These results support the hypotheses that there is coordinate expression of some cellulases and hemicellulases, that a catabolite repression type of mechanism regulates cellulase expression in rapidly growing cells, and that the presence of hemicelluloses has an effect on cellulose utilization by the cell.  相似文献   

9.
The planar and anchoring residues of the family IIIa cellulose binding domain (CBD) from the cellulosomal scaffolding protein of Clostridium cellulovorans were investigated by site-directed mutagenesis and cellulose binding studies. By fusion with maltose binding protein, the family IIIa recombinant wild-type and mutant CBDs from C. cellulovorans were expressed as soluble forms. Cellulose binding tests of the mutant CBDs indicated that the planar strip residues played a major role in cellulose binding and that the anchoring residues played only a minor role.  相似文献   

10.
A five-gene cluster around the gene in Clostridium cellulovorans that encodes endoglucanase EngL, which is involved in plant cell wall degradation, has been cloned and sequenced. As a result, a mannanase gene, manA, has been found downstream of engL. The manA gene consists of an open reading frame with 1,275 nucleotides encoding a protein with 425 amino acids and a molecular weight of 47, 156. ManA has a signal peptide followed by a duplicated sequence (DS, or dockerin) at its N terminus and a catalytic domain which belongs to family 5 of the glycosyl hydrolases and shows high sequence similarity with fungal mannanases, such as Agaricus bisporus Cel4 (17.3% identity), Aspergillus aculeatus Man1 (23.7% identity), and Trichoderma reesei Man1 (22.7% identity). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and N-terminal amino acid sequence analyses of the purified recombinant ManA (rManA) indicated that the N-terminal region of the rManA contained a DS and was truncated in Escherichia coli cells. Furthermore, Western blot analysis indicated that ManA is one of the cellulosomal subunits. ManA production is repressed by cellobiose.  相似文献   

11.
This study is the first to demonstrate the activity of putative cellulosomal protease/peptidase inhibitors (named cyspins) of Clostridium cellulovorans, using the Saccharomyces cerevisiae display system. Cyspins exhibited inhibitory activities against several representative plant proteases. This suggests that these inhibitors protect their microbe and cellulosome from external attack by plant proteases.  相似文献   

12.
A thermostable beta-glucosidase from Clostridium thermocellum which is expressed in Escherichia coli was used to determine the substrate specificity of the enzyme. A restriction map of the beta-glucosidase gene cloned in plasmid pALD7 was determined. Addition of the E. coli cell extract (containing the beta-glucosidase) to the cellulase complex from C. thermocellum increased the conversion of crystalline cellulose (Avicel) to glucose. The increase was specifically due to hydrolysis of the accumulated cellobiose. A cellulose degradation process using beta-glucosidase to assist the potent cellulase complex of C. thermocellum, as shown here can open the way for industrial saccharification of cellulose to glucose.  相似文献   

13.
Abstract The anaerobic degradation of microcrystalline cellulose by thermostable cellulolytic enzyme complexes from Clostridium thermocellum JW20 (ATCC 31449) was monitored. For quantitative investigations as enzyme-coupled spectrophotometric assay has been developed. The assay allows for the evaluation of the release of cellubiose-/glucose-units from native cellulose. Kinetic studies revealed that the anaerobic breakdown of crystalline cellulose (CC) at 60°C follows Michaelis-Menten kinetics K m CC values have been determined for different aggregation states of the cellulolytic complex. The presented assay seems well suited to screen for CC-degrading enzymes of various sources, and to further explore the mechanism of CC-breakdown.  相似文献   

14.
15.
The genome of Clostridium thermocellum contains a number of genes for polysaccharide degradation-associated proteins that are not cellulosome bound. The list includes beta-glucanases, glycosidases, chitinases, amylases and a xylanase. One of these 'soluble'-enzyme genes codes for a second glycosyl hydrolase (GH)48 cellulase, Cel48Y, which was expressed in Escherichia coli and biochemically characterized. It is a cellobiohydrolyse with activity on native cellulose such as microcrystalline and bacterial cellulose, and low activity on carboxymethylcellulose. It is about 100 times as active on amorphic cellulose and mixed-linkage barley beta-glucan compared with cellulase Cel9I. The enzyme Cel48Y shows a distinct synergism of 2.1 times with the noncellulosomal processive endoglucanase Cel9I on highly crystalline bacterial cellulose at a 17-fold excess of Cel48Y over Cel9I. These data show that C. thermocellum has, besides the cellulosome, the genes for a second cellulase system for the hydrolysis of crystalline cellulose that is not particle bound.  相似文献   

16.
Clostridium cellulovorans, an anaerobic bacterium, degrades native substrates efficiently by producing an extracellular enzyme complex called the cellulosome. All cellulosomal enzyme subunits contain dockerin domains that can bind to hydrophobic domains termed cohesins which are repeated nine times in CbpA, the nonenzymatic scaffolding protein of C. cellulovorans cellulosomes. In this study, the synergistic interactions of cellulases (endoglucanase E, EngE; endoglucanase L, EngL) and hemicellulases (arabinofuranosidase A, ArfA; xylanase A, XynA) were determined on the degradation of corn fiber, a natural substrate containing mainly xylan, arabinan, and cellulose. The degradation by XynA and ArfA of cellulose/arabinoxylan was greater than that of corn fiber and resulted in 2.6-fold and 1.4-fold increases in synergy, respectively. Synergistic effects were observed in increments in both simultaneous and sequential reactions with ArfA and XynA. These synergistic enzymes appear to represent potential rate-limiting enzymes for efficient hemicellulose degradation. When mini-cellulosomes were constructed from the cellulosomal enzymes (XynA and EngL) and mini-CbpA with cohesins 1 and 2 (mini-CbpA1&2) and mini-CbpA with cohesins 5 and 6 (mini-CbpA5&6), higher activity was observed than that for the corresponding enzymes alone. Based on the degradation of different types of celluloses and hemicelluloses, the interaction between cellulosomal enzymes (XynA and EngL) and mini-CbpA displayed a diversity that suggests that dockerin-cohesin interaction from C. cellulovorans may be more selective than random.  相似文献   

17.
18.
19.
Abstract Certain isolated components of fungal cellulases, which cannot effect the breakdown of highly ordered cellulose individually, interact together synergistically to do so when recombined. Suprisingly, not all fungal cellulase components exhibit this property, and no such synergism has been observed so far between fungal and bacterial cellulases.
The cellulase complex of Clostridium thermocellum cannot effect the extensive breakdown of highly ordered cellulose unless Ca2+ and dithiothreitol (DTT) are present. However, we now report that isolated cellobiohydrolase from Trichoderma koningii can combine with C. thermocellum cellulase to effect the breakdown of cellulose in the absence of Ca2+ and DTT. enhanced activity is observed if Ca2+ and DTT are present.
This finding may have important applications in industry: it certainly has important implications for those interested in the basic mechanism of cellulase action in C. thermocellum .  相似文献   

20.
The gene coding for CelG, a family 9 cellulase from Clostridium cellulolyticum, was cloned and overexpressed in Escherichia coli. Four different forms of the protein were genetically engineered, purified, and studied: CelGL (the entire form of CelG), CelGcat1 (the catalytic domain of CelG alone), CelGcat2 (CelGcat1 plus 91 amino acids at the beginning of the cellulose binding domain [CBD]), and GST-CBD(CelG) (the CBD of CelG fused to glutathione S-transferase). The biochemical properties of CelG were compared with those of CelA, an endoglucanase from C. cellulolyticum which was previously studied. CelG, like CelA, was found to have an endo cutting mode of activity on carboxymethyl cellulose (CMC) but exhibited greater activity on crystalline substrates (bacterial microcrystalline cellulose and Avicel) than CelA. As observed with CelA, the presence of the nonhydrolytic miniscaffolding protein (miniCipC1) enhanced the activity of CelG on phosphoric acid swollen cellulose (PASC), but to a lesser extent. The absence of the CBD led to the complete inactivation of the enzyme. The abilities of CelG and GST-CBD(CelG) to bind various substrates were also studied. Although the entire enzyme is able to bind to crystalline cellulose at a limited number of sites, the chimeric protein GST-CBD(CelG) does not bind to either of the tested substrates (Avicel and PASC). The lack of independence between the two domains and the weak binding to cellulose suggest that this CBD-like domain may play a special role and be either directly or indirectly involved in the catalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号