首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hexosamine pathway (HP) is a biochemical hypothesis recently proposed explaining cellular alterations occurring during diabetic microvascular complications. Diabetic retinopathy is a common microvascular complication of diabetes, and it is known that cell proliferation is severely affected during the development of the disease. Particularly, early stages are characterized by death of the retinal microvascular cells, pericytes. Gangliosides have often been described to regulate cell growth; however, very few studies focused on the potential role of gangliosides in diabetic microvascular alterations. The aim of this article was to investigate the effect of the HP activation on pericyte proliferation and determine the potential implication of gangliosides in this process. Results indicate first that HP activation, mimicked by glucosamine treatment, decreased pericyte proliferation. Second, glucosamine treatment induced a modification of gangliosides pattern, particularly GM1 and GD3 were significantly increased. Next, results showed that exogenous addition of a-series gangliosides (GM3, GM2, GM1, GD1a) and b-series ganglioside (GD3) caused a decrease of pericyte proliferation, whereas nonsialylated precursors glucosylceramide and lactosylceramide were without effect. Furthermore, when ganglioside biosynthesis was blocked using PPMP, a glucosylceramide synthase inhibitor, the effects of glucosamine on pericyte proliferation were partially reversed. Our results suggest that in retinal pericytes, gangliosides and particularly GM1 and GD3 that are increased in response to glucosamine, are involved in the antiproliferative effect of glucosamine. These observations also underlie the potential involvement of gangliosides in a pathological context, such as diabetic microvascular complications.  相似文献   

2.
L T Montour  A C Macaulay  N Adelson 《CMAJ》1989,141(6):549-552
The authors report the rates of obesity, hypertension, hypercholesterolemia, smoking, and macrovascular and microvascular complications among Mohawks of Kahnawake, PQ, who have non-insulin-dependent diabetes mellitus. The data were derived from a study comparing rates of macrovascular and microvascular complications among the diabetic subjects and a nondiabetic group matched for age and sex. The data for both groups were collected by means of chart review, interview and body measurement. There were no important differences between the male and female diabetic subjects. Both sexes had high levels of obesity, hypertension, hypercholesterolemia and diabetic complications. A total of 86% of the diabetic subjects were obese; the rate was also very high (74%) among the nondiabetic subjects. The mean age at onset of diabetes, 59 years, was 10 years higher than that observed in Oneida Iroquois of Ontario. The rates of macrovascular disease among the diabetic subjects were higher than those found among Cree/Ojibwa in Ontario and Manitoba. Our findings add to the knowledge of non-insulin-dependent diabetes in North American Indians in Canada and show that there are differences between our Mohawk subjects and diabetic people of other native communities.  相似文献   

3.
BackgroundDiabetes mellitus is a multifactorial disorder with the risk of micro- and macro-vascular complications. High glucose-induced derangements in metabolic pathways are primarily associated with the initiation and progression of secondary complications namely, diabetic nephropathy, neuropathy, and retinopathy. Adenosine monophosphate-activated protein kinase (AMPK) has emerged as an attractive therapeutic target to treat various metabolic disorders including diabetes mellitus. It is a master metabolic regulator that helps in maintaining cellular energy homeostasis by promoting ATP-generating catabolic pathways and inhibiting ATP-consuming anabolic pathways. Numerous pharmacological and plant-derived bioactive compounds that increase AMP-activated protein kinase activation has shown beneficial effects by mitigating secondary complications namely retinopathy, nephropathy, and neuropathy.PurposeThe purpose of this review is to highlight current knowledge on the role of AMPK and its activators from plant origin in diabetic microvascular complications.MethodsSearch engines such as Google Scholar, PubMed, Science Direct and Web of Science are used to extract papers using relevant key words. Papers mainly focusing on the role of AMPK and AMPK activators from plant origin in diabetic nephropathy, retinopathy, and neuropathy was chosen to be highlighted.ResultsAccording to results, decrease in AMPK activation during diabetes play a causative role in the pathogenesis of diabetic microvascular complications. Some of the plant-derived bioactive compounds were beneficial in restoring AMPK activity and ameliorating diabetic microvascular complications.ConclusionAMPK activators from plant origin are beneficial in mitigating diabetic microvascular complications. These pieces of evidence will be helpful in the development of AMPK-centric therapies to mitigate diabetic microvascular complications.  相似文献   

4.
糖尿病是危害人群健康的一种慢性疾病。糖尿病微血管病变是糖尿病的特异性病变,其并发症主要包括肾脏病变,视网膜病变及神经病变。而其发生受多种因素影响,其发生机制研究已形成多种学说,主要有非酶糖基化、多元醇通路、氧化应激及己糖胺通路学说等。近年来硫辛酸对糖尿病微血管并发症的治疗作用是国内外研究的热点,硫辛酸是高效抗氧化剂,清除自由基和活性氧,再生体内谷胱甘肽等其他抗氧化剂,减弱氧化应激,从而硫辛酸可减弱多种糖尿病微血管并发症的诱发因素,并干预多元醇通路与己糖胺通路,对糖尿病微血管并发症中的相应靶器官有保护作用,本文就硫辛酸在糖尿病微血管病变中的应用做一简要综述。  相似文献   

5.
Advanced glycation end products (AGEs) are involved in the occurrence of vascular complications in diabetes. The present study was undertaken to investigate the level of low-molecular weight products of AGEs (LMW-AGEs) in relation to microvascular complications in type 1 diabetes, and the possible relationship with nitric oxide (NO) as a marker of endothelial function. Patients with normal renal function (NRF) were classified into two groups: (1) without, and (2) with diabetic neuropathy; and patients with renal impairment also into two groups: (3) diabetic renal disease, and (4) end-stage renal disease. The fluorescence of LMW-AGEs and measurement of NO metabolites was assessed in 277 serum samples. In addition, multiple regression analysis was performed. In group 1, LMW-AGEs level (9.3±1.1 AF%) was higher than in the control group (2.4±0.3 AF%). A trend in the increase of LMW-AGEs with neuropathy (29.7±5.5 AF%, group 2), and further with renal impairment (47.0±8.0, group 3 and 137.8±25.5 AF%, group 4), was observed. In multivariate regression analysis LMW-AGEs were associated with NO metabolites in group 2. In NRF patients, diabetic neuropathy was significantly correlated with LMW-AGEs and NO metabolites, independently of serum creatinine and duration of diabetes. This relationship suggests that the NO and LMW-AGEs’ actions (possibly synergistic) in endothelial activation possess a role in the initiation and development of diabetic microvascular complications.  相似文献   

6.
The spontaneously diabetic torii (SDT) fatty rat is a new model of type 2 diabetes showing overt obesity, hyperglycemia and hyperlipidemia. With early onset of diabetes mellitus, diabetic microvascular complications, including nephropathy, peripheral neuropathy and retinopathy, are observed at young ages. In the present study, blood glucose levels of female SDT fatty rats were controlled with phlorizin, a non-selective SGLT inhibitor, to examine whether and how these complications are caused by hyperglycemia. Phlorizin treatment adequately controlled plasma glucose levels during the experiment. At 29 weeks of age, urinary albumin excretion considerably increased in SDT fatty rats. Glomerulosclerosis and tubular pathological findings also indicate diabetic nephropathy. These renal parameters tended to decrease with phlorizin; however, effects were partial. Sciatic nerve conduction velocities were significantly delayed in SDT fatty rats compared with Sprague-Dawley (SD) rats. Intraepidermal nerve fiber density, an indicator of subclinical small nerve fiber neuropathy, significantly decreased in SDT fatty rats. Retinal dysfunction (prolongation of peak latency for oscillatory potential in electroretinograms) and histopathological eye abnormalities, including retinal folding and mature cataracts were also observed. Both nerve and eye disorders were prevented with phlorizin. These findings indicate that severe hyperglycemia mainly causes diabetic complications in SDT fatty rats. However, other factors, such as hyperlipidemia and hypertension, may affect diabetic nephropathy. These characteristics of diabetic complications will become helpful in evaluating new drugs for diabetic complications using SDT fatty rats.  相似文献   

7.
The inheritance of non-insulin-dependent (type II) diabetes was studied by a continuous infusion of glucose test in all available first degree relatives of 48 diabetic probands of various ages and with differing severity of disease. In an initial study of 38 type II diabetic subjects and their first degree relatives six islet cell antibody negative patients with early onset disease (aged 25-40 at diagnosis) were found to have a particularly high familial prevalence of diabetes or glucose intolerance. Nine of 10 parents available for study either had type II diabetes or were glucose intolerant. A high prevalence of diabetes or glucose intolerance was also found in their siblings (11/16;69%). In a second study of the families of a further 10 young diabetic probands (presenting age 25-40) whose islet cell antibody state was unknown a similar high prevalence of diabetes or glucose intolerance was found among parents of the five islet cell antibody negative probands (8/9; 89%) but not among parents of the five islet cell antibody positive probands (3/8;38%). Islet cell antibody negative diabetics with early onset type II disease may have inherited a diabetogenic gene or genes from both parents. They commonly need insulin to maintain adequate glycaemic control and may develop severe diabetic complications. Early onset type II diabetes may represent a syndrome in which characteristic pedigrees, clinical severity, and absence of islet autoimmunity make it distinct from either type I diabetes, maturity onset diabetes of the young, or late onset type II diabetes.  相似文献   

8.
This study aimed to further analyse the potential role of oxidative stress in children and adolescents with type 1 diabetes at clinical onset, during disease progression and when early microvascular complications ( + DC) appeared. Compared with age-matched controls, diabetic patients had greater oxidative damage to lipids, proteins and DNA demonstrated by analysis of plasma and erythrocyte malondialdehyde, carbonyl proteins and leukocyte 8-hydroxy-deoxyguanosine, all of which were significantly raised at onset, decreased during the first 1.5 years of evolution and rose progressively thereafter. Plasma lipid levels were significantly associated with lipid and protein oxidation products. Erythrocyte glutathione and glutathione-peroxidase activity were significantly decreased with the lowest values at onset and in + DC sub-groups. Insulin therapy in the first year improved metabolic and oxidant-antioxidant status and, consequently, hyperglycaemia-derived biomolecular oxidative damage. Diabetes-associated hyperlipidaemia is related to lipid and protein oxidation, thereby supporting the concept of glucotoxicity and lipotoxicity being inter-related. The overall increase in lipid, protein and DNA oxidative damage in diabetic patients with microangiopathy could be pathogenetically relevant in the early development of diabetes-related complications.  相似文献   

9.
BACKGROUND/AIMS: Numerous clinical and experimental studies suggest that growth factors may contribute to the development of diabetic microvascular complications. The aim of the study was to test the hypothesis that in adolescents with type-1 diabetes mellitus and microalbuminuria (MA) there are specific disorders of serum insulin-like growth factor-1 (IGF-1) and concentrations of its binding proteins, IGFBP-1 and IGFBP-3, that could be of importance in the pathogenesis of microvascular diabetic complications. METHODS: 25 adolescents with MA, 24 adolescents with diabetes without complications, and 17 controls were examined. There were no differences with regard to age, puberty stage, HbA1c and body mass index between the groups examined. Two of the patients in the first group also had diabetic retinopathy. Serum fasting concentrations of IGF-1 and overnight urine albumin concentrations were measured by radioimmunoassay, IGFBP-1 and IGFBP-3 concentrations by immunoradiometric assay and HbA1c by high-performance liquid chromatography methods. Diabetic patients were examined by an experienced ophthalmologist and neurologist. The data were analyzed using Kruskal-Wallis ANOVA and multiple regression analysis. RESULTS: Significantly lower IGF-1 concentrations were found in adolescents with diabetes and MA compared to diabetic patients without complications and healthy contemporaries. IGFBP-1 concentrations were significantly higher and IGFBP-3 concentrations were statistically lower in diabetic patients with MA than in patients without complications. CONCLUSIONS: The IGF-IGFBP system is deranged in adolescents with type-1 diabetes mellitus and MA. Our results suggest the participation of circulating IGFBP-1 in the origin of diabetic complications. It could be also possible that IGFBP-3 takes part in the protection from them.  相似文献   

10.
糖尿病肾病发病分子机制   总被引:4,自引:0,他引:4       下载免费PDF全文
糖尿病肾病(DN)是高血糖所导致的一种主要的微血管并发症。在全世界糖尿病病人中,糖尿病肾病都有着非常高的发病率和致死率。并且在中国,糖尿病肾病已经成为一种常见的导致末期肾衰竭的因素。由于糖尿病肾病患者不断增多,传统的单纯通过控制血糖来控制糖尿病肾病并没有取得理想的效果,因此临床上迫切需要一些新的治疗方法来控制糖尿病肾病的发生和发展。最近的研究表明肾素-血管紧张素-醛固酮系统(RAAS)、蛋白激酶-C(PKC)、还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶、转化生长因子-β(TGF-β)等都单独的或共同的参与了DN的发生和发展过程。这些通路彼此交叉,十分复杂,因此需要对糖尿病肾病发病分子机制进行全面的综合的理解。这篇文章旨在讨论已发现的与糖尿病肾病密切相关的分子机制以及下调通路。  相似文献   

11.
糖尿病视网膜病变是糖尿病最常见、最主要的微血管并发症之一,具有高发病率,高致盲率的特点,严重影响了人类的生存质量。控制高血糖和改善组织缺氧无疑是防治糖尿病微血管病变的有效方法。如果对糖尿病视网膜病变及时进行治疗,能延缓其发展并能提高病人的生活质量。近年来,随着对糖尿病发病机制的深入研究,很多方法用于防治糖尿病视网膜病人都取得了一定的疗效。而高压氧治疗是许多急慢性疾病的首选治疗方法。已有基础和临床研究证实,高压氧治疗对糖尿病视网膜病变安全有效。因此,作为一种新疗法,高压氧疗法可能会为糖尿病视网膜病变的治疗带来更广泛的应用前景。  相似文献   

12.
The prevalence of diabetes mellitus is increasing all over the world and it is apparent that treatment of diabetic complications has the same importance as primary diabetes treatment and glycemic control. Diabetic complications occur as a result of prolonged hyperglycemia and its consequences, such as advanced glycation end products and reactive oxygen species. Impairment of lipid profile is also contributed to worsening diabetic complications. Therefore, it seems that the application of lipid-lowering agents may have positive effects on reversing diabetic complications besides glycemic control. Statins, a group of lipid-lowering compounds, have been shown to exert antioxidant, immunomodulatory, anti-inflammatory, and antiproliferative properties beyond their lipid-lowering effects. Furthermore, they have been reported to improve diabetic complications with different pathways. In this review, we will discuss the clinical importance, molecular biology of the most important microvascular/macrovascular diabetic complications, possible application of statins and their mechanism of action in retarding these complications.  相似文献   

13.
This study aimed to further analyse the potential role of oxidative stress in children and adolescents with type 1 diabetes at clinical onset, during disease progression and when early microvascular complications ( + DC) appeared. Compared with age-matched controls, diabetic patients had greater oxidative damage to lipids, proteins and DNA demonstrated by analysis of plasma and erythrocyte malondialdehyde, carbonyl proteins and leukocyte 8-hydroxy-deoxyguanosine, all of which were significantly raised at onset, decreased during the first 1.5 years of evolution and rose progressively thereafter. Plasma lipid levels were significantly associated with lipid and protein oxidation products. Erythrocyte glutathione and glutathione-peroxidase activity were significantly decreased with the lowest values at onset and in + DC sub-groups. Insulin therapy in the first year improved metabolic and oxidant-antioxidant status and, consequently, hyperglycaemia-derived biomolecular oxidative damage. Diabetes-associated hyperlipidaemia is related to lipid and protein oxidation, thereby supporting the concept of glucotoxicity and lipotoxicity being inter-related. The overall increase in lipid, protein and DNA oxidative damage in diabetic patients with microangiopathy could be pathogenetically relevant in the early development of diabetes-related complications.  相似文献   

14.
Diabetes mellitus is associated with an increased risk of cardiovascular disease due to its negative impact on the vascular endothelium. The damaged endothelium is repaired by resident cells also through the contribution of a population of circulating cells derived from bone marrow. These cells, termed endothelial progenitor cells (EPCs) are involved in maintaining endothelial homeostasis and contributes to the formation of new blood vessels with a process called postnatal vasculogenesis. The mechanisms whereby these cells allow for protection of the cardiovascular system are still unclear; nevertheless, consistent evidences have shown that impairment and reduction of EPCs are hallmark features of type 1 and type 2 diabetes. Therefore, EPC alterations might have a pathogenic role in diabetic complications, thus becoming a potential therapeutic target. In this review, EPC alterations will be examined in the context of macrovascular and microvascular complications of diabetes, highlighting their roles and functions in the progression of the disease.  相似文献   

15.
Oxidative stress has been implicated as a mechanism underlying hyperglycaemia-associated cellular damage and could play a role in the development of diabetes-related complications. This study aimed to evaluate the significance of changes in oxidant-antioxidant status in 176 child and adolescent diabetic patients at clinical onset, during disease progression and when early microvascular complications appeared. Indicative lipid and protein oxidation markers and antioxidant defence activity were measured in plasma and correlated with clinical data, diabetes duration, long-term glycometabolic control and serum lipids. Compared with their respective age-matched controls, diabetic patients had greater oxidative damage to lipids and proteins, demonstrated through the analysis of hydroperoxides, lipoperoxides and oxidation protein products, all of which were significantly raised at onset, decreased during the first 1.5 years of evolution and rose progressively thereafter. Plasma levels of oxidizable lipids were significantly associated with lipid and protein oxidation products. Overall, plasma antioxidant capacity was significantly and consistently lower from clinical onset onwards. These results suggest that insulin therapy in the first year improved metabolic and oxidant homeostasis and consequently hyperglycaemia-derived biomolecular oxidative damage. Diabetes-associated hyperlipidaemia is related to lipid and protein oxidation processes, which supports the concept of glucose toxicity and lipotoxicity being interrelated. The greatest increase in lipid and protein oxidative damage biomarkers in young diabetic patients with premature microangiopathy points to oxidative stress as a possible contributing mechanism of microvascular dysfunction. Consequently, tight lipid and glycometabolic control may have therapeutic potential by diminishing oxidative tissue-damaging effects of hyperglycaemia.  相似文献   

16.
Diabetes was the first disease state where evidence emerged for increased formation of methylglyoxal. Metabolism of methylglyoxal by the glyoxalase system has been linked to the development of vascular complications of diabetes - nephropathy, retinopathy, neuropathy and cardiovascular disease. Increased formation of methylglyoxal in hyperglycaemia associated with diabetes and down regulation of glyoxalase 1 by inflammatory signalling in vascular cells leads to a marked increased modification of proteins by methylglyoxal to form advanced glycation endproducts at the sites of vascular complications. Hotspot protein targets of methylglyoxal that suffer functional impairment - the dicarbonyl proteome - likely play a key role in the mechanisms underlying the development of vascular complications in diabetes: particularly modification of integrin binding sites in extracellular matrix proteins leading to endothelial cell shedding and anoikis, modification of mitochondrial proteins and increased formation of reaction oxygen species, and modification of apolipoprotein B100 of low density lipoprotein leading to its increased atherogenicity. Some current therapeutic agents counter partially dysfunctional metabolism of methylglyoxal by the glyoxalase system in diabetes - including the recent development of high dose thiamine therapy for early stage diabetic nephropathy. Further pharmacologic strategies are required to overcome the down regulation of glyoxalase1 in diabetes. The glyoxalase system is likely to be a continuing and future focus for research on clinical biomarkers and therapeutic development for respectively assessment of metabolic control and prevention of vascular complications in diabetes and obesity.  相似文献   

17.
The endoplasmic reticulum (ER) is the primary cellular compartment where proteins are synthesized and modified before they can be transported to their destination. Dysfunction of the ER impairs protein homeostasis and leads to the accumulation of misfolded/unfolded proteins in the ER, or ER stress. While it has long been recognized that ER stress is a major cause of conformational disorders, such as Alzheimer's disease, Huntington's disease, certain types of cancer, and type 2 diabetes, recent evidence suggests that ER stress is also implicated in many chronic inflammatory diseases. These diseases include irritable bowel syndrome, atherosclerosis, diabetic complications, and many others. Diabetic retinopathy is a common microvascular complication of diabetes, characterized by chronic inflammation, progressive damage to retinal vascular and neuronal cells, vascular leakage, and abnormal blood vessel growth (neovascularization). In this review, we discuss the role and mechanisms of ER stress in retinal inflammation and vascular damage in diabetic retinopathy.  相似文献   

18.
Two important consequences of hyperglycemia in diabetes are development of oxidative stress and formation of advanced glycation end products (AGE) which are known to be associated with diabetic complications. Relationship between AGE formation and development of oxidative stress (OS) is yet to be established. In the present study, the involvement of AGE in PMN-mediated ROS generation and the associated OS were investigated in type 2 diabetic mellitus (DM) patients. We assessed OS parameters (serum MDA, FRAP and GSH), PMN oxidative functions (respiratory burst and superoxide production) and total serum AGE in 90 subjects divided equally in three groups--control group, Group I consisting of type 2 diabetic patients without microvascular complications and Group II consisting of type 2 diabetic patients with microvascular complications. PMNs isolated from both groups (I and II) exhibited higher level of respiratory burst (RB) and produced increased amount of superoxide anion as compared to the controls. The increase was more pronounced in diabetes with complications, as compared to those without. Serum malondialdehyde (MDA) level was elevated, whereas glutathione (GSH) and ferric reducing ability of plasma (FRAP) levels were significantly reduced in diabetes as compared to the controls, suggesting the presence of oxidative stress in DM. A positive correlation between PMN oxidative function and OS parameters suggested the involvement of PMN in the development of OS in DM. Serum AGE level was also elevated in diabetic groups as compared to the controls. Further, the positive correlation between serum AGE level and PMN oxidative function suggested the involvement of AGE in increased RB and generation of reactive oxygen species (ROS) by resting diabetic PMN. The results of the study indicate that AGE-PMN interaction possibly upregulates NADPH oxidase, leading to enhanced ROS generation and thus contributes to the pathogenesis in diabetes.  相似文献   

19.
Diabetes mellitus compromises endothelium-dependent relaxation of blood vessels. This has been linked to the generation of reactive oxygen species (ROS), which neutralise nitric oxide (NO) and interfere with vasodilator function. Experiments using chelators have emphasised the importance of ROS produced by transition metal catalysed reactions. However, particularly for the small arteries and arterioles that control microcirculatory blood flow, NO is not the only endothelium-derived mediator; endothelium-derived hyperpolarizing factor (EDHF) has a major role. EDHF-mediated vasodilation is severely curtailed by diabetes; however, little information exists on the underlying pathophysiology. Deficits in the EDHF system, alone or in combination with the NO system, are crucial for the development of diabetic microvascular complications. To further elucidate the mechanisms involved, the aim was to examine the effects of diabetes and preventive and intervention chelator therapy with trientine on a preparation that has well-defined NO and EDHF-mediated responses, the rat mesenteric vascular bed. In phenylephrine-preconstricted preparations, maximum vasodilation to acetylcholine was reduced by 35 and 44% after 4 and 8 weeks of streptozotocin-induced diabetes, respectively. Trientine treatment over the first 4 weeks gave 72% protection; intervention therapy over the final 4 weeks prevented deterioration and corrected the initial deficit by 68%. These responses depend on both NO and EDHF. When the latter mechanism was isolated by NO synthase inhibition, diabetic deficits of 53.4 (4 weeks) and 65.4% (8 weeks) were revealed, that were 65% prevented and 50% corrected by trientine treatment. Neither diabetes nor trientine altered vascular smooth muscle responses to the NO donor, sodium nitroprusside (SNP). Thus, the data suggest that metal catalysed ROS production makes a substantial contribution to defects in both the EDHF and NO endothelial mechanisms in diabetes, which has therapeutic implications for microvascular complications.  相似文献   

20.
Diabetes mellitus compromises endothelium-dependent relaxation of blood vessels. This has been linked to the generation of reactive oxygen species (ROS), which neutralise nitric oxide (NO) and interfere with vasodilator function. Experiments using chelators have emphasised the importance of ROS produced by transition metal catalysed reactions. However, particularly for the small arteries and arterioles that control microcirculatory blood flow, NO is not the only endothelium-derived mediator; endothelium-derived hyperpolarizing factor (EDHF) has a major role. EDHF-mediated vasodilation is severely curtailed by diabetes; however, little information exists on the underlying pathophysiology. Deficits in the EDHF system, alone or in combination with the NO system, are crucial for the development of diabetic microvascular complications. To further elucidate the mechanisms involved, the aim was to examine the effects of diabetes and preventive and intervention chelator therapy with trientine on a preparation that has well-defined NO and EDHF-mediated responses, the rat mesenteric vascular bed. In phenylephrine-preconstricted preparations, maximum vasodilation to acetylcholine was reduced by 35 and 44% after 4 and 8 weeks of streptozotocin-induced diabetes, respectively. Trientine treatment over the first 4 weeks gave 72% protection; intervention therapy over the final 4 weeks prevented deterioration and corrected the initial deficit by 68%. These responses depend on both NO and EDHF. When the latter mechanism was isolated by NO synthase inhibition, diabetic deficits of 53.4 (4 weeks) and 65.4% (8 weeks) were revealed, that were 65% prevented and 50% corrected by trientine treatment. Neither diabetes nor trientine altered vascular smooth muscle responses to the NO donor, sodium nitroprusside (SNP). Thus, the data suggest that metal catalysed ROS production makes a substantial contribution to defects in both the EDHF and NO endothelial mechanisms in diabetes, which has therapeutic implications for microvascular complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号