首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
Characterization of the Oenothera mitochondrial ribosomal gene cluster rps19-rps3-rpl16 shows the two genes rps3 and rpl16 to be separated by 9 nucleotides. The first codon of rpl16 is a GTG codon for valine and the only potential translational start. This GTG codon is conserved at the same position in maize, Petunia and Marchantia mitochondria, while sequences diverge upstream. These observations suggest that GTG at least at this position may act as translation initiation codon in plant mitochondria. Analysis of RNA editing suggests both genes to code for functional ribosomal proteins in Oenothera mitochondria. A duplication/recombination event at a decanucleotide in the intron of rps3 created a pseudogene missing part of the intron and the 3 exon.  相似文献   

2.
Yeast strains present in 10 samples of kefir of different commercial and domestic origins have been isolated and classified taxonomically on the basis of the internal transcribed sequences (ITS) of their ribosomal RNA genes. A total of 18 yeast strains representing 10 different species have been characterized. Of the three commercial kefir samples analyed, two contained the well characterized yeast Kluyveromyces lactis while no yeast was found in the other one. A broader spectrum of yeast species was found among the home-made kefir samples, of which Issatchenkia orientalis, Saccharomyces unisporus, Saccharomyces exiguus and Saccharomyces humaticus were the most representative species.  相似文献   

3.
Proteomic studies have addressed the composition of plant chloroplast ribosomes and 70S ribosomes from the unicellular organism Chlamydomonas reinhardtii But comprehensive characterization of cytoplasmic 80S ribosomes from higher plants has been lacking. We have used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to analyse the cytoplasmic 80S ribosomes from the model flowering plant Arabidopsis thaliana. Of the 80 ribosomal protein families predicted to comprise the cytoplasmic 80S ribosome, we have confirmed the presence of 61; specifically, 27 (84%) of the small 40S subunit and 34 (71%) of the large 60S subunit. Nearly half (45%) of the ribosomal proteins identified are represented by two or more distinct spots in the 2-DE gel indicating that these proteins are either post-translationally modified or present as different isoforms. Consistently, MS-based protein identification revealed that at least one-third (34%) of the identified ribosomal protein families showed expression of two or more family members. In addition, we have identified a number of non-ribosomal proteins that co-migrate with the plant 80S ribosomes during gradient centrifugation suggesting their possible association with the 80S ribosomes. Among them, RACK1 has recently been proposed to be a ribosome-associated protein that promotes efficient translation in yeast. The study, thus provides the basis for further investigation into the function of the other identified non-ribosomal proteins as well as the biological meaning of the various ribosomal protein isoforms.Patrick Giavalisco, Daniel Wilson are contributed equally to this work.  相似文献   

4.
5.
The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45–49%) than to the eubacterial counterparts (35%)  相似文献   

6.
The expression of ribosomal protein (rp) genes is regulated at multiple levels. In yeast, two genes are autoregulated by feedback effects of the protein on pre-mRNA splicing. Here, we have investigated whether similar mechanisms occur in eukaryotes with more complicated and highly regulated splicing patterns. Comparisons of the sequences of ribosomal protein S13 gene (RPS13) among mammals and birds revealed that intron 1 is more conserved than the other introns. Transfection of HEK 293 cells with a minigene-expressing ribosomal protein S13 showed that the presence of intron 1 reduced expression by a factor of four. Ribosomal protein S13 was found to inhibit excision of intron 1 from rpS13 pre-mRNA fragment in vitro. This protein was shown to be able to specifically bind the fragment and to confer protection against ribonuclease cleavage at sequences near the 5′ and 3′ splice sites. The results suggest that overproduction of rpS13 in mammalian cells interferes with splicing of its own pre-mRNA by a feedback mechanism.  相似文献   

7.
Summary Two mitochondrial ribosomal proteins of yeast (Saccharomyces cerevisiae) were purified and their N-terminal amino acid sequences determined. The sequence data were used for the synthesis of oligonucleotide probes to clone the corresponding genes. Thus, the genes for two proteins, termed YMR-31 and YMR-44, were cloned and their nucleotide sequences determined. From the nucleotide sequence data, the coding region of the gene for protein YMR-31 was found to be composed of 369 nucleotide pairs. Comparison of the amino acid sequence of protein YMR-31 and the one deduced from the nucleotide sequence of its gene suggests that it contains an octapeptide leader sequence. The calculated molecular weight of protein YMR-31 without the leader sequence is 12792 dalton. The gene for protein YMR-44 was found to contain a 147 bp intron which contains two sequences conserved among yeast introns. The length of the two exons flanking the intron totals 294 nucleotide pairs which can encode a protein with a calculated molecular weight of 11476 dalton. The gene for protein YMR-31 is located on chromosome VI, while the gene for protein YMR-44 is located on either chromosome XIII or XVI.  相似文献   

8.
Summary Mitochondrial DNA from four strains of the oomycete Achlya has been compared and nine gene loci mapped, including that of the ribosomal protein gene, var1. Examination of the restriction enzyme site maps showed the presence of four insertions relative to a map common to all four strains. All the insertions were found in close proximity to genic regions. The four strains also cotained the inverted repeat first observed in A. ambisexualis (Hudspeth et al. 1983), allowing an examination by analysis of retained restriction sites of the evolutionary stability of repeated DNA sequences relative to single copy sequences. Although the inverted repeat is significantly more stable than single copy sequences, more detailed analysis indicated that this stability is limited to the portion encoding the ribosomal RNA genes. Thus, the apparent evolutionary stability of the repeat does not appear to derive from the inverted repeat structure per se.Abbreviations ATPase 6, 9 genes for ATPase subunits 6 and 9 - COI, II, III genes for cytochrome oxidase subunits 1, 2, and 3 - COB gene for apocytochrome b - L-, S-RNA genes for the mitochondrial large and small ribosomal RNAs - mtDNA mitochondrial DNA - var1 gene for the S. cerevisiae mitochondrially, encoded ribosomal protein - m.u. map units - bp base pairs - kb kilobase pairs  相似文献   

9.
10.
We present phylogenetic evidence that a group I intron in an angiosperm mitochondrial gene arose recently by horizontal transfer from a fungal donor species. A 1,716-bp fragment of the mitochondrial coxI gene from the angiosperm Peperomia polybotrya was amplified via the polymerase chain reaction and sequenced. Comparison to other coxI genes revealed a 966-bp group I intron, which, based on homology with the related yeast coxI intron aI4, potentially encodes a 279-amino-acid site-specific DNA endonuclease. This intron, which is believed to function as a ribozyme during its own splicing, is not present in any of 19 coxI genes examined from other diverse vascular plant species. Phylogenetic analysis of intron origin was carried out using three different tree-generating algorithms, and on a variety of nucleotide and amino acid data sets from the intron and its flanking exon sequences. These analyses show that the Peperomia coxI gene intron and exon sequences are of fundamentally different evolutionary origin. The Peperomia intron is more closely related to several fungal mitochondrial introns, two of which are located at identical positions in coxI, than to identically located coxI introns from the land plant Marchantia and the green alga Prototheca. Conversely, the exon sequence of this gene is, as expected, most closely related to other angiosperm coxI genes. These results, together with evidence suggestive of co-conversion of exonic markers immediately flanking the intron insertion site, lead us to conclude that the Peperomia coxI intron probably arose by horizontal transfer from a fungal donor, using the double-strand-break repair pathway. The donor species may have been one of the symbiotic mycorrhizal fungi that live in close obligate association with most plants. Correspondence to: J.C. Vaughn  相似文献   

11.
Structural comparison of yeast ribosomal protein genes.   总被引:12,自引:19,他引:12       下载免费PDF全文
The primary structure of the genes encoding the yeast ribosomal proteins L17a and L25 was determined, as well as the positions of the 5'- and 3'-termini of the corresponding mRNAs. Comparison of the gene sequences to those obtained for various other yeast ribosomal protein genes revealed several similarities. In all split genes the intron is located near the 5'-side of the amino acid coding region. Among the introns a clear pattern of sequence conservation can be observed. In particular the intron-exon boundaries and a region close to the 3'-splice site show sequence homology. Conserved sequences were also found in the leader and trailer regions of the ribosomal protein mRNAs. The 5'-flanking regions of the yeast ribosomal protein genes appeared to contain sequence elements that many but not all ribosomal protein genes have in common, and therefore may be implicated in the coordinate expression of these genes. The amino acid coding sequences of the ribosomal protein genes show a biased codon usage. Like most yeast ribosomal protein molecules, L17a and L25 are particularly basic at their N-terminus.  相似文献   

12.
The cDNAs encoding two dimeric hemoglobins, Hbs I and II, of the deep-sea clam Calyptogena soyoae were amplified by PCR and the complete nucleotide sequences determined. The cDNA-derived amino acid sequences agreed completely with those determined chemically. Many of the molluscan intracellular globin genes have a characteristic four-exon/three-intron structure, with the precoding and two conventional introns conserved widely in animal globin genes. In this work we have determined the exon/intron organization of two hemoglobin genes of the deep-sea clam C. soyoae. Surprisingly, this gene has no precoding intron but instead contains an additional intron in the A-helix (A3.1), together with the two conventional introns (B12.2 and G6.3). This observation suggests that the precoding intron has been lost and the insertion of intron in A-helix occurred in the genes of Calyptogena. Alternatively, the sliding of intron from precoding to A-helix might have occurred.  相似文献   

13.
Summary The fidelity of translation in the yeast Saccharomyces cerevisiae is controlled by a number of gene products. We have begun a molecular analysis of such genes and here describe the cloning and analysis of one of these genes, SAL3. Mutations at this locus, and at least four other unlinked loci (designated SAL1-SAL5), increase the efficiency of the tRNA ochre suppressor SUQ5, and are thus termed allosuppressors. We have cloned the SAL3 gene from a yeast genomic library by complementation of a sal3 mutation. Integration of the cloned sequence into the yeast chromosome was used to confirm that the SAL3 gene had been cloned. SAL3 gene is present in a single copy in the yeast genome, is transcribed into a 2.3-kb polyadenylated mRNA and encodes a protein of Mr 80 000. The size of the SAL3 gene product strongly suggests that it is not a ribosomal protein.  相似文献   

14.
15.
16.
The pyruvate kinase-encoding gene (pki1) from Trichoderma reesei was isolated by hybridization to the corresponding Aspergillus nidulans pkiA gene. The 1614-bp nucleotide (nt) sequence of the cloned gene codes for a 538-amino-acid protein. The coding sequence contains a single intron of 246 nt at a position identical to that of intron E in the A. nidulans gene. The PKI protein shows extensive homology to the PKIs of A. nidulans and A. niger (67%) and Saccharomyces cerevisiae (59%). The 5' non-coding sequence contains a number of motifs typical for yeast glycolytic genes, but so far only rarely found in filamentous fungi.  相似文献   

17.
Organization of the genes encoding chalcone synthase in Pisum sativum   总被引:3,自引:0,他引:3  
To analyze the regulation of defense-related genes by signal molecules produced by phytopathogens, we isolated genes that encode chalcone synthase (CHS) in Pisum sativum. We have obtained seven independent genomic clones that contain at least seven classes of CHS genes, identified by the hybridization analysis to CHS cDNA and by the restriction mapping analysis. Two of the genomic clones (clone 5 and 6) each contain two CHS genes in a tandem repeat. The nucleotide sequence analysis of CHS genomic clone 5 revealed that PsCHS1 and PsCHS2 were corresponding genes of the CHS cDNA clones, pCC6 and pCC2, respectively, as reported earlier. Both genes are interrupted by a single intron of 88 nucleotides with identical sequences, although exonic sequences and 5-flanking sequences are divergent. Nucleotide sequences of the introns in five other classes of CHS genes showed that three classes had an intron of 87 nt with a striking homology to each other, but that the intron of the other two classes of CHS genes showed heterogeneity both in size and nucleotide sequence. 5-upstream regions of PsCHS1 and PsCHS2 did not show sequence homology except the 31 bp identical sequence that contains the CCTACC motif resembling the box-1 sequence. Both PsCHS1 and PsCHS2 genes are shown to be induced by fungal elicitor by a primer extension analysis and a transient transformation analysis using pea protoplasts prepared from suspension cultured-cells.  相似文献   

18.
Summary We have developed an efficient procedure for the disruption of Chlamydomonas chloroplast genes. Wild-type C. reinhardtii cells were bombarded with microprojectiles coated with a mixture of two plasmids, one encoding selectable, antibiotic-resistance mutations in the 16S ribosomal RNA gene and the other containing either the atpB or rbcL photosynthetic gene inactivated by an insertion of 0.48 kb of yeast DNA in the coding sequence. Antibiotic-resistant transformants were selected under conditions permissive for growth of nonphotosynthetic mutants. Approximately half of these transformants were initially heteroplasmic for copies of the disrupted atpB or rbcL genes integrated into the recipient chloroplast genome but still retained photosynthetic competence. A small fraction of the transformants (1.1% for atpB; 4.3% for rbcL) were nonphotosynthetic and homoplasmic for the disrupted gene at the time they were isolated. Single cell cloning of the initially heteroplasmic transformants also yielded nonphotosynthetic segregants that were homoplasmic for the disrupted gene. Polypeptide products of the disrupted atpB and rbcL genes could not be detected using immunoblotting techniques. We believe that any nonessential Chlamydomonas chloroplast gene, such as those involved in photosynthesis, should be amenable to gene disruption by cotransformation. The method should prove useful for the introduction of site-specific mutations into chloroplast genes and flanking regulatory sequences with a view to elucidating their function.  相似文献   

19.
A and B globin cDNAs from the tetrameric hemoglobin of the bivalve molluscScapharca inaequivalvis were isolated by RT-PCR and sequenced. When compared with the biochemical data, the deduced protein sequences revealed only one amino acid substitution in the B chain. In order to investigate the genomic structure of these invertebrate globin genes, their intronic regions were amplified by PCR. The two genes showed the typical two-intron/three-exon organization found in vertebrates and seemed to reflect the ancestral gene structure, in accordance with the new globin gene evolution theory proposed by Dixon and Pohajadak (Trends Biochem. Sci. 17:486–488, 1992). The alternative hypothesis suggested by Go (Nature 291:90–92, 1981), that the central intron was lost during evolution, is also considered. In contrast to the related clamAnadara trapezia, S. inaequivalvis A and B globin genes were found to be present in multiple copies differing in intron size. In this study we report the complete sequences of the A (1,471 bp) and B (2,221 bp) globin genes, giving a detailed analysis of their intron features.  相似文献   

20.
Summary Yeast phosphofructokinase is an octamer composed of two different kinds of subunit. The genes coding for these subunits have been isolated by means of functional complementation in a pfk1 pfk2 double mutant. As a source of DNA the genomic library of Nasmyth and Tatchell (1980) constructed in the yeast multicopy vector YEp13 was used. Plasmids containing the information of one or the other gene were identified by back-transformation into pfk single mutants (pfk1 PFK2, PFK1 pfk2). Restriction maps of the respective insertions are provided. The genomic organization was confirmed by Southern analysis. Northern analysis showed hybridization to mRNAs of about 3.6 kb for both genes, corresponding to the molecular weight of the protein subunits. Transformation with one of the plasmids did not lead to an increase in phosphofructokinase activity. Subcloning of both genes in one multicopy vector (YEp13) and reintroduction into the yeast cell resulted in a 3.5-fold higher specific activity compared to the wild type. Overproduction of the protein subunits in this transformant was confirmed by SDS-polyacrylamide electrophoresis of crude extracts stained with Coomassie-blue. This was not accompanied by an increased ethanol production. The sequences encoding the two subunits were shown to share homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号