首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soya Bean Seed Growth and Maturation In vitro without Pods   总被引:2,自引:0,他引:2  
Immature Glycine max (L.) Merrill seeds, initially between 50and 450 mg f. wt, were grown and matured successfully in vitro.Excised seeds were floated in a liquid medium containing 5 percent sucrose, minerals and glutamine in flasks incubated at25 °C under 300 to 350 µE m–2 s–1 fluorescentlight. During 16 to 21 d in culture, seeds grew to a matured. wt of 100 to 600 mg per seed at an average rate of 5 to 25mg d. wt per seed d–1 depending on initial size. Growthrates were maximal during the first 8 to 10 d in vitro but declinedwith loss of green colour in the cotyledons. Seed coats rupturedwith rapid cotyledon expansion during the first 2 d in culture.Embryos were tolerant to desiccation and 80 to 90 per cent germinatedif removed from culture before complete loss of green colour.The growth of excised seeds in vitro exceeded the growth ofseeds in detached pods, but when windows were cut in pods topermit direct exposure of seeds to the medium, seed growth wascomparable. Glycine max (L.) Merrill, soya bean, seed culture, seed growth, seed maturation, germination  相似文献   

2.
We were interested in determining whether the low protein contentof pea seeds (Pisum sativum L.) as compared to soya bean seeds(Glycine max L. Merrill) might be due to faster degradationof the pea storage proteins during development of the seed.Pea and soya bean cotyledons were subjected to a ‘pulse-chase’experiment using [3H]glycine in in-vitro cultures. In peas,legumin had a half-life of 146 days, while vicilin had a half-lifeof 39 days. There was no measureable degradation of soya beanstorage proteins. Even with the pea storage proteins, the half-liveswere so much longer than the maturation time of seeds that degradationof storage proteins could not account for the lower proteincontent of peas as compared to soya beans. The validity of theseresults was indicated by the finding that non-storage proteinshad much shorter half-lives and that omission of a carbon ora nitrogen source greatly accelerated degradation. Labelledglycine was found to be a good probe for protein turnover studiesbecause it was very rapidly metabolized. Glycine max L. Merrill, soya bean, Pisum sativum, L. pea, protein turnover, storage proteins, legumin, vicilin  相似文献   

3.
VAN STADEN  J. 《Annals of botany》1979,44(6):671-675
The combined application of 10–6 M adenine and 10–6M mevalonic acid to soya bean callus accelerated its growth.Two biologically active compounds that co-chromatographed withzeatin and isopentenyl adenine were extracted from this callus.Studies with labelled adenine and mevalonic acid indicated thatthe cytokinin-dependent soya bean callus incorporated only avery small amount of the radioactive precursors into the biologically-activecompounds, making it extremely difficult to determine whetherthese compounds were synthesized de novo or whether they aroseas by-products of tRNA turnover. As cytokinins do not accumulatein rapidly-growing cytokinin-dependent soya bean callus culturedon kinetin as a source of cytokinin it seems as if biosynthesisde novo occurs when the callus is supplied with adenine andmevalonic acid. Glycine max (L.) Merrill, soya bean, callus culture, adenine, mevalonic acid, endogenous cytokinins  相似文献   

4.
The relationship between the induction of tracheary elementdifferentiation and exogenous L-methionine was examined in agar-growncultures of soya bean callus initiated from Glycine max L. ‘Wayne’and ‘Clark 63’. Although Wayne is a normal cultivarsoya bean, seedlings of Clark 63 exhibit abnormal growth at25 °C due to exessive ethylene biosynthesis at this temperature.Wayne callus showed increased xylogenesis in the presence ofexogenous L-methionine (3.7 µg 1–1) in comparisonto IAA–KN controls at both 20 and 25 °C. Clark 63callus produced greater numbers of tracheary elements in responseto exogenous L-methionine only at 25 °C. The induction ofxylem differentiation was independent of the maintenance temperatureof the stock cultures of both cultivars. Xylogenesis initiatedbyan IAA–KN medium was inhibited by the addition of AgNO3(20 mg 1–1) to the extent of 76.5 per cent in cv. Wayneand 6 per cent in cv. Clark 63. The inhibitory effect was partiallyreversed by the addition of L-methionine (3.7 µg 1–1)to the IAA–KN–AgNO2 medium. These data support thehypothesis that xylogenesis in vitro involves auxin, cytokininand ethylene. differentiation, xylogenesis, L-methionine, ethylene, Glycine max L., soya bean, callus culture, auxin, kinetin  相似文献   

5.
Immature Glycine max (L.) Merr. seeds initially at 50–70mg fresh weight were successfully grown and matured in vitroin detached pods. Surface sterilized pods were floated in aliquid medium containing 5 per cent sucrose, minerals, and glutaminein 125 ml Erlenmeyer flasks and incubated at 25 °C under350–400 µE m–1 s–1 white light. Seedswhich were matured in vitro increased tenfold in dry weight,were visually similar to commercial seeds of the same size,were tolerant to desiccation and germinated with normal seedlinggrowth. Excised pods transported dye from the pedicel to thegrowing seed within 120 min. Soya bean pod culture is a usefultechnique to study the influence of single or combinations ofchemical or environmental parameters on regulation of seed growth,seed maturation, and subsequent germination events without theconfounding interactions with the mother plant. Glycine max (L.) Merr., soya bean, pod culture, seed culture, seed growth, seed maturation, germination  相似文献   

6.
Soybean [Glycine max (L.) Merrill] seeds and cotyledons weregrown in an in vitro culture system to investigate the relationshipsbetween cell expansion (net water uptake by the seed) and drymatter accumulation. Seeds or cotyledons grown in a completenutrient medium containing 200 mol m–3 sucrose continueddry matter accumulation for up to 16 d after in planta seedsreached physiological maturity (maximum seed dry weight). Seedor cotyledon water content increased throughout the cultureperiod and the water concentration remained above 600 g kg–1fresh weight. These data indicate that the cessation of seeddry matter accumulation is controlled by the physiological environmentof the seed and is not a pre-determined seed characteristic.Adding 600 mol m–3 mannitol to the medium caused a decreasein seed water content and concentration. Seeds in this mediumstopped accumulating dry matter at a water concentration ofapproximately 550 g kg–1. The data suggest that dry matteraccumulation by soybean seeds can continue only as long as thereis a net uptake of water to drive cell expansion. In the absenceof a net water uptake, continued dry matter accumulation causesdesiccation which triggers maturation. Key words: Glycine max (L.) Merrill, solution culture, duration of seed growth, water content, dry matter accumulation  相似文献   

7.
GENT  M. P. N. 《Annals of botany》1983,51(3):317-329
The dry weight of the whole fruit, the pod wall and an enclosedseed of randomly harvested soya beans is estimated from theexternal dimensions of the attached pod. The relations betweendimensions and dry weight are independent of cultivar and growthcondition and can be used on pods from 1 cm in length untilthe seeds reach their maximum fresh weight. Dimensions of tagged pods of three cultivars of field grownsoya beans differing in time to reach maturity were measuredevery 2–3 days from initial pod elongation until maturation.Dry weights for each pod were estimated from the dimensions,and the dry weight accumulation with time was fitted to thelogistic function to find the growth rate that best characterizedthe data for each pod. The final weight, the specific growthrate and the maximum growth rate of the whole fruit, the podwall and a single seed were subjected to analysis of variance. The most significant difference between pods of these cultivarswas the specific growth rate of individual seeds, which decreasedwith increasing maturity group. There were no differences ingrowth of the pod wall. However, most of the variation was betweenindividual pods within a cultivar, where the rate of dry weightaccumulation of the whole fruit, governed largely by the seedgrowth rate times the number of seeds, was highly correlatedwith the earlier growth of the pod wall. This suggests thatthe growth of individual whole fruit was determined early inpod development and was slightly influenced by factors appliedduring the period of rapid seed growth. Glycine max (L.) Merrill, Soya bean, seed growth analysis, specific growth rate  相似文献   

8.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

9.
Diurnal temperature fluctuations induced change in soya bean-pod[Glycine max (L.) Merr.] carbon exchange rate (CER, where positiveCER represents CO2 evolution). CER appeared to depend linearlyon temperature. Linear regressions of CER on temperature interceptedthe temperature axis at 5°C (i.e. zero CER at 5°C).Slopes of these regressions (i.e. temperature sensitivity) changedover the season. The CER-temperature sensitivity coefficient,K, (calculated from observed values of CER. pod temperatureand temperature intercept) rose from less than 0·02 mgCO2 h–1 pod–1 °C–1 during early pod-flll,peaked at over 0·04 mg CO2 h–1 pod–1 °C–1at mid pod-fill, and then declined during late pod-fill andmaturation. Glycine max (L.) Merr., Soya bean, carbon exchange rate, temperature  相似文献   

10.
Seed of three chickpea (Cicer arietinum L.), three cowpea [Vignaunguiculata (L.) Walp.] and four soya bean [Glycine max (L.)Merr.] cultivars were hermetically stored for up to 2 yearsin various constant environments which included temperaturesfrom —20 to 70 °C and moisture contents (fresh weightbasis) from 5 to 25 per cent. In all cases the survival curvescould be described by negative cumulative normal distributions.The longevity of the various seed lots differed but the valueof the standard deviation (the reciprocal of which gives theslope of the survival curve when percentage germination is transformedto probit) was the same for all cultivars within a species whenstored under similar conditions. Within each species the relativeeffects of moisture and temperature on longevity did not differsignificantly between cultivars. In all three species therewas a negative logarithmic relationship between seed moisturecontent and longevity, but the relative effect of moisture contentdiffered between the species: differences in the longevity ofsoya bean seed as a function of moisture content were less thanfor either cowpea or chickpea. The relative effect of temperatureon seed longevity did not differ between the three species,and the seed of all three species showed increasing temperaturecoefficients for the change in rate of loss of viability withincrease in temperature. The complete pattern of loss in viabilityin all three species can be described by a single equation whichwas developed for barley and has also been shown to apply toonion seed. The constants applicable to the three grain legumeshave been calculated so that it is now possible to predict percentageviability of any seed lot of these species after any storageperiod under a very wide range of storage conditions. Cicer arietinum L., chickpea, Glycine max (L.) Merr., soya bean, Vigna unguiculata (L.) Walp., cowpea, seed longevity, seed storage, moisture content, temperature  相似文献   

11.
Seed swelling, germination, root extension, lateral root initiationand shoot growth were studied in soils of different water contents,using non-destructive, serial neutron radiography. Seeds fromthree varieties of soya beans (Glycine max L.) and one varietyeach of maize (Zea mays L.) and vetch (Vicia sativa L.) wereused. The seeds germinated when they had increased in size bya certain amount, if germination is taken as the time when theradicle first appears. The rate at which roots and shoots extendalso depend on soil water content. Glycine max L., Vicia sativa L., Zea mays L., Soya bean vetch, maize, seed germination, root extension, lateral root initiation, neutron radiography  相似文献   

12.
Yamagata, M., Kouchi, H. and Yoneyama, T. 1987. Partitioningand utilization of photosynthate produced at different growthstages after anthesis in soybean (Glycine max L. Merr.): Analysisby long term 13C-labelling experiments.—J. exp. Bot. 38:1247–1259. Soybean (Glycine max L. Merr. var. Akishirome) plants were allowedto assimilate 13CO2 with a constant specific activity for 10h at different growth stages (a total of seven times at aboutone week intervals) after anthesis. The plants were harvestedperiodically until the time of full maturity and the partitioningof 13C into individual plant parts was investigated with anemphasis on the contribution of carbon assimilated at differentgrowth stages to the seed formation. Carbon assimilated at the middle to late seed-filling stagecontributed most to the seed production; one day contributionaccounted for 3–4% in total carbon of the seed at fullmaturity. Integrated contribution of carbon assimilated afteranthesis was estimated as 96% of the final seed carbon. An approximationbased on the temporal data of the incorporation of labelledcarbon into the seeds indicates that 77% of the final seed carboncame from direct transfer of current photosynthate from sourceleaves, which occurred within a few days after the photosyntheticfixation, while the rest originated from remobilization of carbonreserved mainly in leaves and stems plus petioles. In comparison with the total carbon accumulation in the seeds,protein carbon in the seeds was relatively more dependent onphotosynthate produced during the early period of reproductivegrowth stage, whereas lipid carbon was more dependent on photosynthateproduced during the later reproductive stage. Key words: Photosynthate partitioning, soybean (Glycine max L. Merr.), 13CO2 assimilation, seed formation  相似文献   

13.
Developing seeds of soya bean cultivars Chestnut and Altonahave only trace amounts of ß-amylase activity. Comparedto a standard variety, Wells, ß-amylase activitieswere 200–300 times lower in Chestnut and Altona. Nevertheless,Chestnut and Altona accumulate starch as a transient reservematerial which is utilized later in development. Seeds of Chestnutand Altona also produce starch early in germination which subsequentlydeclines after the 4th day of germination. Throughout germinationß-amylase levels in these cultivars are about 300-foldlower than that observed in Wells, which has a similar patternof starch metabolism. Widely varying levels of ß-amylasein both developing and germinating seeds appear to be unrelatedto starch metabolism which is very similar in all cultivarsstudied. Consequently, ß-amylase activity seems irrelevantto starch metabolism in the soya bean seed. starch, ß-amylase, Glycine max. (L.), Merr, soya bean  相似文献   

14.
‘Physiological maturity’, i.e. the time when seedsreach their maximum dry weight during development, occurredwhen maturation drying on the parent plant in the field hadreduced seed moisture content to approximately 60 per cent infaba bean (Vicia faba L.), lentil (Lens culinaris Medic.), chickpea(Cicer arietinum L.), white lupin (Lupinus albus L.), soya bean(Glycine max [L.] Merr.) and pea (Pisum sativum L.) The onsetof desiccation-tolerance, i.e. the ability of seeds to germinatefollowing harvest and rapid artificial drying, coincided withphysiological maturity, except in pea where it occurred a littleearlier at about 70 per cent moisture content. Maximum seedquality as determined by maximum viability, minimum seedlingabnormalities and maximum seedling size occurred in pea, chickpeaand lupin when seeds were harvested for rapid drying at physiologicalmaturity; but for maximum seed quality in the other speciesmaturation drying had to proceed further - to about 45 per centmoisture content in soya bean and to about 30 per cent moisturecontent in lentil and faba bean seed crops. Much of this variationamongst the six species, however, was due to differences inthe variation in maturity within each seed crop. Results forindividual pods showed that peak maturity, i.e. maximum seedquality following harvest and rapid artificial drying, was achievedin all six species once maturation drying had reduced the moisturecontent of the seeds to 45–50 per cent. In pea, faba beanand soya bean there was a substantial decline in viability andan increase in seedling abnormalities when harvest was delayedbeyond the optimal moisture content for harvest.  相似文献   

15.
Potato plants (Solanum tuberosum L.) were grown in water culture.About 14 d after tuber initiation no significant differenceswere found between apical and basal tuber parts in 14C-uptakeand partitioning into various fractions from 14C-labelled photosynthate.Thus, the fresh weight of these tubers could be used as a parameterfor the sink size. The 14C-content per tuber (sink strength)20 h after 14CO2-supply to the foliage was significantly correlatedwith the tuber fresh weight. No correlation was found betweenthe 14C-concentration of the tuber (sink activity; ct. ming fr. wt.) and tuber fresh weight. Consequently, tuberfresh weight (sink size) per se must have been a factor whichinfluenced sink strength. Stolon parameters characterizing theirgrowth prior to tuber initiation (e.g. stolon volume) and theircapacity for photosynthate transport (diameter, length) weremeasured at the time of tuber initiation. Significant correlationswere found between these stolon parameters and subsequent growthof individual tubers. Anatomical studies on the proportion ofvarious tissues in the cross sectional area of stolons supportthe idea of a negative relation between growth of individualtubers and transport resistance in the phloem of the stolons.It is concluded that in the initial phase of tuber growth, mainlyfactors outside of the tuber determine its growth rate. In laterstages of tuber growth, when the sink strength increases, thecompeting strength of individual tubers for photosynthate isdominated mainly by factors within the tuber itself, such astheir sink size and sink activity. Key words: Potato tuber, sink size, tuber initiation, transport resistance  相似文献   

16.
The Effect of Source-Sink Alterations on Soybean Seed Growth   总被引:3,自引:0,他引:3  
Soybeans (Glycine max L. Merrill) were grown in the greenhouseand in the field to investigate the effect of variations inthe assimilate supply during the linear phase of seed developmenton the rate and duration of growth of individual seeds. Increasedassimilate supplies, created by partial fruit removal, increasedrates of dry matter accumulation, duration of seed growth, andfinal seed size (weight per seed). Reductions in the supplyof assimilate to the developing seed, created by shading (60per cent) the plants during the linear phase of seed development,lowered seed growth rate but did not affect final seed sizebecause of a longer duration of seed growth. Nitrogen stressduring seed development, created by removing N from the nutrientmedium, did not affect seed growth rate but shortened the durationof seed growth and reduced final seed size. The data indicatethat the growth characteristics of soybean seed are influencedby the supply of assimilate to the seed during the linear phaseof seed development. Glycine max L., soybean, seed growth rate, duration of seed growth, effective filling period  相似文献   

17.
The effects of high (15 mM) and low (0.75 mM) solution nitratelevels on nitrogen metabolism in three genotypes (IL 7A, IL13 and IL 21) of winged beans [Psophocarpus tetragonolobus (L.)DC.] and one genotype (Williams) of soya bean [Glycine max (L.)Merrill] were investigated. Plants were grown for 42 days ina greenhouse in solution culture prior to sampling. The 15 mM nitrate treatment resulted in greater growth of allplant parts except roots. Growth of soya beans was more responsiveto nitrate level than was growth of winged beans. The high nitratelevel inhibited nodulation in all plants. The IL 13 and IL 21winged bean genotypes had similar nitrogenase activity (acetylenereduction per plant) as the soya bean and IL 7A winged beangenotype had lower activity. However, the IL 13 winged beangenotype had higher nitrogenase activity (acetylene reductionper unit nodule mass) than the other three genotypes which allhad similar activity. The 15 mM solution nitrate level stimulatedleaf and root nitrate reductase (NR) activity for all plants.All winged bean genotypes had higher leaf NR activity and higherpercentage reduced- and nitrate-nitrogen contents of leavesand stems compared with soya beans. However, total protein (reducednitrogen) was greater in soya beans when sampled indicatingthat more nitrate had been metabolized by soya beans than bywinged beans during the 42-day growth period. Psophocarpus tetragonolobus (L.) DC., winged bean, Glycine max (L.) Merrill, Soya bean, nitrate reductase, nitrogen fixation, nitrogenase activity, nodulation  相似文献   

18.
Crafts-Brandner, S. J. and Egli, D. B. 1987. Modification ofseed growth in soybean by physical restraint. Effect on leafsenescence.—J. exp. Bot. 38: 2043–2049. The effect of total plant sink size on leaf senescence in soybean[Glycine max (L.) Merrill] was investigated by using a simple,non-destructive method to decrease seed growth rate and totalplant fruit sink size without altering fruit or seed number.The treatment consisted of placing plastic pod restriction devices(PPRD), which were made from plastic drinking straws (6·35mm diameter), over the fruits so that all of the seeds werecontained within the PPRD's. The treatment did not alter thetime of initiation of leaf senescence for two cultivars (McCalland Maple Amber), but decreased the rate of leaf senescencebased on declines in chlorophyll, ribulose-l,5-hi'sphosphatecarboxylase/oxygenase level and carbon dioxide exchange rate.The treatment also delayed seed maturation. At the time of seedmaturation, the plants still retained green leaves. In a separate experiment, one seed in each fruit (40% of theseeds on the plant) was not restrained by the PPRD's. This treatmentled to an intermediate rate of leaf senescence compared to controland complete seed restriction treatments. The results indicatedthat, for the cultivars examined (1) leaf senescence was initiatedat the same time regardless of sink size (2) the rate of leafsenescence could be modified by altering sink size and (3) seedmaturation could occur without complete leaf yellowing and leafabscission. The effect of the PPRD treatments on leaf senescencewere similar to results obtained when fruits were physicallyremoved, which indicated that physical removal of fruits doesnot lead to artefacts due to wounding of the plants. Key words: Glycine max L, senescence, source-sink  相似文献   

19.
Field experiments using two soybean (Glycine max L. Merrill)cultivars (‘Elgin 87’ and ‘Essex’) wereconducted for 2 years near Lexington, KY, USA to evaluate theeffect of source-sink alterations on seed carbohydrate statusand growth. Sucrose concentrations in developing cotyledonsof control plants were consistently low (<50 m M) early inseed development, but they increased to 100–150 m M byphysiological maturity. The concentrations increased in bothyears by 47 to 59% when 90% of the pods were removed from ‘Elgin87’, but the increase had no effect on individual seedgrowth rate (SGR). Shading (80%) reduced cotyledon sucrose levelsand SGR in both years. The critical cotyledon sucrose concentration(the concentration providing 80% of the maximum cotyledon growthrate) was estimated fromin vitro cotyledon growth at sucroseconcentrations of 0–200 m M. These critical concentrationsvaried from 72–124 m M;in planta control cotyledon sucroseconcentrations were below this critical level during the firsthalf of seed growth but exceeded it in the later stages of growthin all experiments. The estimated critical concentration wasconsistent with the failure of in planta SGR to respond to anincrease in assimilate supply and with the reduction in SGRassociated with a decrease in assimilate supply. The resultssuggest that soybean SGR is generally sink limited if photosynthesisincreases during seed filling, but source limited if photosynthesisis reduced. Copyright 2001 Annals of Botany Company Glycine max(L.) Merrill, soybean, source-sink ratios, sucrose, starch, depodding, shade, in vitro culture  相似文献   

20.
The rapid and uniform establishment of soya bean [Glycine max(L.) Merr.] stands is conducive to higher yields. This studywas undertaken to determine the effects of cultivar, temperature,and seed size on the rate of germination and emergence. No cultivar effect on the germination rate was observed. However,in an emergence study from a sand-soil-peat mixture, cultivardifferences in emergence rates were noted(‘Chippewa 64’> ‘Wayne’ > ‘Amsoy 71’). In anotheremergence study (sand media) the cvs ‘Calland’ and‘Williams’ emerged faster than the cv. 'Wayne or‘Wells’. Time required for 50 per cent germination decreased (18.8–4.0days) as the temperature increased from 10 to 30 °C (5 °Cincrements). Emergence (50 per cent) from a sand-soil-peat mixturewas more rapid (19.8–6.3 days) as the simulated plantingdate (growth chamber set to simulate field temperatures) wasdelayed from 16 April to 15 June with an intermediate date of16 May. In addition, time required for 50 per cent emergence of thecultivars from sand decreased (793–76 h) as the temperaturewas increased from 10 to 30 °C with no decrease from 30to 35 °C. Seed size effects were apparent, with the very small seed germinatingslower than the three larger seed sizes. In the emergence studieswith both the sand and sand-soil-peat mixture there was a generaltrend toward more rapid emergence with the smaller seeds. However,the absolute differences were small. Significant cultivar x temperature interactions were observedfor the germination and emergence rates. In most cases the cultivarsmerged in terms of germination and emergence rates at temperaturesbetween 10 and 20 °C and at the higher temperatures thecultivar rankings were different from those observed at temperaturesbelow the merging point. Glycine max (L.) Merr, soya bean, seed germination, establishment of seedlings  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号