首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To evaluate the Gunnerus Ridge land‐bridge hypothesis, which postulates a Late Cretaceous causeway between eastern Antarctica and southern Madagascar allowing the passage of terrestrial vertebrates. Location Eastern Antarctica, southern Indian Ocean, Madagascar. Methods The review involves palaeogeographical modelling, which draws upon geological and geophysical data, bathymetric charts, and plate tectonic reconstructions, and the evaluation of stratigraphically calibrated phylogenetic analyses to document ghost lineages of select taxa. Results The available geological and geophysical evidence indicates that eastern Antarctica’s Gunnerus Ridge and southern Madagascar were separated for the entire Late Cretaceous by a vast marine expanse. In the mid–Late Cretaceous, the gap was probably punctuated by land on two intervening physiographical highs, the northern Madagascar Plateau and Conrad Rise, the latter of which, although probably large, was still separated from Antarctica’s Riiser‐Larsen Peninsula by c. 1600 km. Recent, stratigraphically calibrated phylogenies including large, terrestrial end‐Cretaceous vertebrate taxa of Madagascar and the Indian subcontinent reveal long ghost lineages that extended into the Early Cretaceous. Main conclusions The view that Antarctica and Madagascar were connected by a long causeway between the Gunnerus Ridge and southern Madagascar in the Late Cretaceous, and that terrestrial vertebrates were able to colonize new frontiers using this physiographical feature, is almost certainly incorrect, as was previously demonstrated for the purported causeway between Antarctica and the Indian subcontinent across the Kerguelen Plateau. Connection across mainland Africa to account for the close relationships of several fossil and extant vertebrate taxa of Indo‐Madagascar and South America is another option, although this too lacks credibility. We conclude that (1) throughout the Late Cretaceous there was no intervening, continuous causeway through Antarctica and associated land bridges between South America to the west and Indo‐Madagascar to the east; and (2) mid‐ to large‐sized, obligate terrestrial forms (e.g. abelisauroid theropod and titanosaurian sauropod dinosaurs and notosuchian crocodyliforms) gained broad distribution across Gondwanan land masses prior to fragmentation and were isolated on Indo‐Madagascar before the end of the Early Cretaceous.  相似文献   

2.
Aim To use biogeographical, palaeomagnetic, palaeosedimentary, and plate circuit data from Late Cretaceous regions in and around the Pacific to test the plate tectonic hypothesis of a pre‐Pacific superocean. Location East Asia, Australia, Antarctica, the western Americas, and the Pacific. Methods Literature surveys of the distributions of Cretaceous, circum‐Pacific taxa were compared with palaeomagnetic and palaeosedimentary data. Uncontroversial plate motions based on seafloor spreading data were also used to test the results of the biogeographical and palaeomagnetic analyses. Results The distributions of Cretaceous terrestrial taxa, mostly dinosaurs, imply direct, continental connections between Australia and East Asia, East Asia and North America, North America and South America, South America and Antarctica, and Antarctica and Australia. Palaeomagnetic, palaeosedimentary, and basic plate circuit analyses require little to no latitudinal motion of the Pacific plate with respect to the surrounding continents. Specifically, the data implies that western North America, East Asia, and the Pacific plate all increased in latitude by roughly the same amount (c. 11 ± 5°) since the Campanian – and that the Pacific Ocean Basin has increased in length north‐to‐south. Main conclusions Each of the analyses provides independent corroboration for the same conclusion: the Late Cretaceous Pacific plate was completely enclosed by the surrounding continents and has not experienced significant latitudinal motion with respect to North America, East Asia, or the Bering land bridge. This contrasts significantly with the plate tectonic history of the Pacific, implying instead that the Pacific plate formed in situ, pushing the continents apart as the plate and basin expanded. These results also substantiate recent biogeographical analyses that have concluded that a narrower Pacific Ocean Basin in the Mesozoic and early Tertiary provides the most reasonable explanation for the great number of trans‐Pacific disjunctions of poor dispersing taxa.  相似文献   

3.
青藏高原白垩纪双壳类生物地理   总被引:3,自引:1,他引:2  
青藏高原白垩纪沉积见于6条东西向延伸的条带内。双壳类主要发育于这些条带的Berriasian,Aptian-Albian,Cenomanian-Turonian,Coniacian-Santonian和Campanian-Maastrichtian5个时期的地层。雅鲁藏布江缝合线为白垩纪双壳类地理分布的主要控制界线。早白垩世期间,雅鲁藏布江缝合带以南的喜马拉雅地区的双壳类Petroceramus,  相似文献   

4.
Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ~43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity.  相似文献   

5.
Four palaeogeographical reconstructions are presented for the southern Cape covering the period Late Permian to Late Cretaceous. This time spans the commencement to an advanced stage of breakup of Gondwanaland, during which the area moved from a mid-continental, high latitude, to an ocean-dominated, middle latitude position. These movements can be traced in facies changes and erosional cycles associated with the rift between West Gondwana and Antarctica (proto southwest Indian Ocean) and the later rift between South America and Africa (proto southeast Atlantic Ocean).  相似文献   

6.
Sampling at appropriate spatial scales in the Southern Ocean is logistically challenging and may influence estimates of diversity by missing intermediate representatives. With the assistance of sampling efforts especially influenced by the International Polar Year 2007-2008, we gathered nearly 1500 specimens of the crinoid species Promachocrinus kerguelensis from around Antarctica. We used phylogeographic and phylogenetic tools to assess its genetic diversity, demographic history and evolutionary relationships. Six phylogroups (A-F) identified in an earlier study are corroborated here, with the addition of one new phylogroup (E2). All phylogroups are circumpolar, sympatric and eurybathic. The phylogeny of Promachocrinus phylogroups reveals two principal clades that may represent two different cryptic species with contrasting demographic histories. Genetic diversity indices vary dramatically within phylogroups, and within populations, suggesting multiple glacial refugia in the Southern Ocean: on the Kerguelen Plateau, in the East Weddell Sea and the South Shetland Islands (Atlantic sector), and on the East Antarctic continental shelf in the Dumont d'Urville Sea and Ross Sea. The inferences of gene flow vary among the phylogroups, showing discordant spatial patterns. Phylogroup A is the only one found in the Sub-Antarctic region, although without evident connectivity between Bouvet and Kerguelen populations. The Scotia Arc region shows high levels of connectivity between populations in most of the phylogroups, and barriers to gene flow are evident in East Antarctica.  相似文献   

7.
The biogeographic and tectonic history of India   总被引:10,自引:0,他引:10  
Aim To present an up to date account of the Mesozoic history of India and its relationship to the other Gondwana continents and to Eurasia. Location Continents surrounding the Western Indian Ocean. Methods Utilization of recent evidence of continental relationships based upon research in stratigraphy, palaeomagnetism, palaeontology, and contemporary biotas. Results The physical data revealed a sequence of events as India moved northward: (1) India–Madagascar rifted from east Africa 158–160 Ma (million years ago), (2) India–Madagascar from Antarctica c. 130 Ma, (3) India–Seychelles from Madagascar 84–96 Ma, (4) India from Seychelles 65 Ma, (5) India began collision with Eurasia 55–65 Ma and (6) final suturing took place c. 42–55 Ma. However, data from fossil and contemporary faunas indicate that, throughout the late Cretaceous, India maintained exchanges with adjacent lands. There is an absence in the fossil record of peculiar animals and plants that should have evolved, had India undergone an extended period of isolation just before its contact with Eurasia. Main conclusions The depiction of India in late Cretaceous as an isolated continent is in error. Most global palaeomaps, including the most recent one, show India, as it moves northward, following a track far out in the Indian Ocean. But the evidence now indicates that India's journey into northern latitudes cannot have taken place under such isolated circumstances. Although real breaks among the lands were indicated by the physical data, faunal links were maintained by vagile animals that were able to surmount minor marine barriers. India, during its northward journey, remained close to Africa and Madagascar even as it began to contact Eurasia.  相似文献   

8.
《Comptes Rendus Palevol》2018,17(3):158-165
During the Jurassic two main marine pathways might act as dispersion routes for vertebrates and invertebrates between Laurasia and Gondwana: the Caribbean Seaway (between North and South America) and the Trans-Erythraean Seaway (splitting Africa from India, Madagascar). The former has proven to be of relevance as a dispersion route for marine vertebrates and invertebrates between the Tethys and Pacific margin of Gondwana. Nevertheless, little is known about the role of the Trans-Erythraean Seaway as a vertebrate dispersion pathway. The Trans-Erythraean Seaway divides the eastern and western South of Gondwana landmasses in the so-called break-up of Gondwana and connects the Tethys Sea with the Palaeo-Pacific. We describe a newly recovered plesiosaur specimen from the Ameghino (= Nordensköld) Formation, Antarctic Peninsula, the first Jurassic plesiosaur from Antarctica. We discuss the importance of this record regarding the hypothesis of marine vertebrate dispersion through the Trans-Erythraean Seaway.  相似文献   

9.
The family Ciehlidae is a large group of tropical fishes in the order Perciformes, with an estimated number of living species exceeding 1400. The modern distribution of the family Ciehlidae is predominantly in fresh waters of Central and South America, Africa, Madagascar, India and the Middle East, with fossil members known from Africa, Saudi Arabia, the Levant, Europe, South America and Haiti. Many authors have referred to the distribution as being Gondwanan and have postulated that cichlids originated over 130 million years ago, in the Early Cretaceous. However, the suggested evidence for an Early Cretaceous origin of cichlids is equally or more compatible with a much younger age of origin. Based on the biology and distribution of modern and fossil cichlids, it is more probable that they arose less than 65 million years ago, in the Early Tertiary, and crossed marine waters to attain their current distribution.  相似文献   

10.
Lactoridaceae are a monotypic family confined to Masatierra Island, Juan Fernández Archipelago, in the Pacific Ocean. It grows in the understorey of a subtropical montane rain forest. Lactoridaceae most probably originated in southern South Africa in the Cretaceous, with the oldest records in the Turonian–Campanian, and reached its widest palaeogeographical distribution by the Maastrichtian, extending into Australia, India, Antarctica, and North and South America. In this paper, we report a new fossil find of lactoridaceous tetrads from the early Miocene of eastern Patagonia, southern South America. This record is the youngest and geographically one of the closest to the extant Lactoris distribution area. Patagonian fossil material shows greater similarities to extant L. fernandeziana Phil. than to any other described morphotaxon. The family may have migrated into South America, either via Africa (through the Atlantic Ocean) or Antarctica, by the Maastrichtian, growing in eastern Patagonia up to the early Miocene. Arid conditions established in this region by the middle–late Miocene onwards would have determined the restriction of forests to the western lands. Lactoridaceae may have followed a similar migration pattern towards the Pacific coast of South America. The shifting of Lactoridaceae towards Masatierra Island would have occurred in the last 4 Myr by long‐distance dispersal events (perhaps by birds). © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 41–50.  相似文献   

11.
Abelisauroid predators have been recorded almost exclusively from South America, India and Madagascar, a distribution thought to document persistent land connections exclusive of Africa. Here, we report fossils from three stratigraphic levels in the Cretaceous of Niger that provide definitive evidence that abelisauroid dinosaurs and their immediate antecedents were also present on Africa. The fossils include an immediate abelisauroid antecedent of Early Cretaceous age (ca. 130-110 Myr ago), early members of the two abelisauroid subgroups (Noasauridae, Abelisauridae) of Mid-Cretaceous age (ca. 110 Myr ago) and a hornless abelisaurid skull of early Late Cretaceous age (ca. 95 Myr ago). Together, these fossils fill in the early history of the abelisauroid radiation and provide key evidence for continued faunal exchange among Gondwanan landmasses until the end of the Early Cretaceous (ca. 100 Myr ago).  相似文献   

12.
Aim To describe the phylogeographic patterns of the black rat, Rattus rattus, from islands in the western Indian Ocean where the species has been introduced (Madagascar and the neighbouring islands of Réunion, Mayotte and Grande Comore), in comparison with the postulated source area (India). Location Western Indian Ocean: India, Arabian Peninsula, East Africa and the islands of Madagascar, Réunion, Grande Comore and Mayotte. Methods Mitochondrial DNA (cytochrome b, tRNA and D‐loop, 1762 bp) was sequenced for 71 individuals from 11 countries in the western Indian Ocean. A partial D‐loop (419 bp) was also sequenced for eight populations from Madagascar (97 individuals), which were analysed in addition to six previously published populations from southern Madagascar. Results Haplotypes from India and the Arabian Peninsula occupied a basal position in the phylogenetic tree, whereas those from islands were distributed in different monophyletic clusters: Madagascar grouped with Mayotte, while Réunion and Grand Comore were present in two other separate groups. The only exception was one individual from Madagascar (out of 190) carrying a haplotype that clustered with those from Réunion and South Africa. ‘Isolation with migration’ simulations favoured a model with no recurrent migration between Oman and Madagascar. Mismatch distribution analyses dated the expansion of Malagasy populations on a time‐scale compatible with human colonization history. Higher haplotype diversity and older expansion times were found on the east coast of Madagascar compared with the central highlands. Main conclusions Phylogeographic patterns supported the hypothesis of human‐mediated colonization of R. rattus from source populations in either the native area (India) or anciently colonized regions (the Arabian Peninsula) to islands of the western Indian Ocean. Despite their proximity, each island has a distinct colonization history. Independent colonization events may have occurred simultaneously in Madagascar and Grande Comore, whereas Mayotte would have been colonized from Madagascar. Réunion was colonized independently, presumably from Europe. Malagasy populations may have originated from a single successful colonization event, followed by rapid expansion, first in coastal zones and then in the central highlands. The congruence of the observed phylogeographic pattern with human colonization events and pathways supports the potential relevance of the black rat in tracing human history.  相似文献   

13.
Abstract

In the past, fossilised dinosaur eggshells have been extensively documented from the Upper Cretaceous Lameta Formation of Central India and as many as nine oospecies are known at present from this formation. Compared to this, only one dinosaur oospecies has been described from the Cretaceous succession of the Cauvery Basin. However, the first fossil egg from India, identified as a chelonian egg, was documented from the Aptian – Albian Karai Formation of the Cauvery Basin in 1957. Following this, a solitary titanosaurid dinosaur egg was described from the Upper Cretaceous (Lower Maastrichtian) Kallankuruchhi Formation, Cauvery Basin in 1996. More recently, we have recovered isolated eggshell fragments from the marine part of the Upper Cretaceous (Late Maastrichtian) Kallamedu Formation. Based on eggshell morphology, microstructure and ultrastructure, these eggshell fragments are assigned to the oospecies Fusioolithus baghensis. The new find from the Cauvery Basin is important from palaeobiogeographic point of view as the oofamily Fusioolithidae is found in the Upper Cretaceous strata of India, France, Argentina and Morocco. Based on the common occurrence of similar oospecies in South America, Africa, Europe and India, a Late Cretaceous palaeobiogeographic connection between India and South America as well as Europe via Africa is suggested.  相似文献   

14.
New fossil mammals found at the base of Acantilados II Allomember of the La Meseta Formation, from the early Eocene (Ypresian) of Seymour Island, represent the oldest evidence of this group in Antarctica. Two specimens are here described; the first belongs to a talonid portion of a lower right molar assigned to the sparnotheriodontid litoptern Notiolofos sp. cf. N. arquinotiensis. Sparnotheriodontid were medium‐ to large‐sized ungulates, with a wide distribution in the Eocene of South America and Antarctica. The second specimen is an intermediate phalanx referred to an indeterminate Eutheria, probably a South American native ungulate. These Antarctic findings in sediments of 55.3 Ma query the minimum age needed for terrestrial mammals to spread from South America to Antarctica, which should have occurred before the final break‐up of Gondwana. This event involves the disappearance of the land bridge formed by the Weddellian Isthmus, which connected West Antarctica and southern South America from the Late Cretaceous until sometime in the earliest Palaeogene.  相似文献   

15.
Studies on the evolution of tropical taxa emphasize the role ofvicariance and the break-up of Gondwana in explaining modern distributions.Earlier studies on figs (Ficus spp.) support this view.In the current study,we used an expanded sample (208 spp.) and improved molecular dating techniques to reconstruct the phylogenetic and biogeographic history of Ficus.Consistent with previous studies,our biogeographic analysis indicated that the ancestor of Ficus was present in Gondwana.However,a relaxed clock analysis relying on uncorrelated rates in BEAST suggested that the Neotropical section Pharmacosycea split-off in South America 86.67 Mya,and that other Ficus lineage ancestors originated in India.Most of the basal lineages appeared to have diverged following KT extinction,then rapidly diversified after India collided with continental Asia.The Afrotropical species most likely evolved initially in the Indian subcontinent then dispersed to Africa,either in the late Cretaceous of Madagascar or even later,following the Eocene collision of India with Asia.The Neotropical section Americana,either islandhopped to South America or took a northern route to the Americas through Europe prior to the terminal Eocene global cooling event.Ficus may have arrived in eastern Malesia following the collision of India with Asia,then widely dispersed thereafter.Given the wide ranges in our date estimates,several other scenarios are possible.However,contrary to earlier reports,our analyses suggest that vicariance played a relatively minor role compared with ecological opportunity and dispersal in the diversification of genus Ficus.  相似文献   

16.
A review of paleontological, phyletic, geophysical, and climatic evidence leads to a new scenario of land mammal dispersal among South America, Antarctica, and Australia in the Late Cretaceous to early Tertiary epochs. New fossil land vertebrate material has been recovered from all three continents in recent years. As regards Gondwana, the present evidence suggests that monotreme mammals and ratite birds are of Mesozoic origin, based on both geochronological and phyletic grounds. The occurrence of monotremes in the early Paleocene (ca. 62 Ma) faunas of Patagonia and of ratites in late Eocene (ca. 41-37 m.y.) faunas of Seymour Island (Antarctic Peninsula) probably is an artifact of a much older and widespread Gondwana distribution prior to the Late Cretaceous Epoch. Except for South American microbiotheres being australidelphians, marsupial faunas of South America and Australia still are fundamentally disjunct. New material from Seymour Island (Microbiotheriidae) indicates the presence there of a derived taxon that resides in a group that is the sister taxon of most Australian marsupials. There is no compelling evidence that dispersal between Antarctica and Australia was as recent as ca. 41 Ma or later. In fact, the derived marsupial and placental land mammal fauna of Seymour Island shows its greatest affinity with Patagonian forms of Casamayoran age (ca. 51–54 m.y.). This suggests an earlier dispersal of more plesiomorphic marsupials from Patagonia to Australia via Antarctica, and vicariant disjunction subsequently. This is consistent with geophysical evidence that the South Tasman Rise was submerged by 64 Ma and with geological evidence that a shallow water marine barrier was present from then onward. The scenario above is consistent with molecular evidence suggesting that australidelphian bandicoots, dasyurids, and diprotodontians were distinct and present in Australia at least as early as the 63-Ma-old australidelphian microbiotheres and the ancient but not basal australidelphian,Andinodelphys, in the Tiupampa Fauna of Bolivia. Land mammal dispersal to Australia typically has been considered to be at a low level of probability (e.g., by sweepstakes dispersal). This study suggests that the marsupial colonizers of Australia included already recognizable members of the Peramelina, Dasyuromorphia, and Diprotodontia, at least, and entered via a filter route rather than by a sweepstakes dispersal.To whom correspondence should be addressed.  相似文献   

17.
The pantropical Picrodendraceae produce mostly spheroidal to slightly oblate, echinate pollen grains equipped with narrow circular to elliptic pori that can be hard to identify to family level in both extant and fossil material using light microscopy only. Fossil pollen of the family have been described from the Paleogene of America, Antarctica, Australia, New Zealand, and Europe, but until now none have been reported from Afro-India. Extant pollen described here include representatives from all recent Picrodendraceae genera naturally occurring in Africa and/or Madagascar and south India and selected closely related tropical American taxa. Our analyses, using combined light microscopy and scanning electron microscopy, show that pollen of the Afro-Indian genera encompass three morphological types: Type 1, comprising only Hyaenanche; Type 2, including Aristogeitonia, Mischodon, Oldfieldia and Voatamalo; Type 3, comprising the remaining two genera, Androstachys and Stachyandra. Based on the pollen morphology presented here it is evident that some previous light microscopic accounts of spherical and echinate fossil pollen affiliated with Arecaceae, Asteraceae, Malvaceae, and Myristicaceae from the African continent could belong to Picrodendraceae. The pollen morphology of Picrodendraceae, fossil pollen records, a dated intra-familial phylogeny, seed dispersal modes, and the regional Late Cretaceous to early Cenozoic paleogeography, together suggest the family originated in the Americas and dispersed from southern America across Antarctica and into Australasia. A second dispersal route is believed to have occurred from the Americas into continental Africa via the North Atlantic Land Bridge and Europe.  相似文献   

18.
Colletidae is a predominantly southern hemisphere bee family with a Late Cretaceous origin and with an inferred ancestral region covering late Gondwanan South America, Antarctica and Australia. One highly diverse colletid subfamily, Euryglossinae, is entirely restricted to Australia and the strictly Afrotropical subfamily Scrapterinae has been inferred as its sister clade. This has led to suggestions that Scrapterinae represents a highly unusual post‐Gondwanan dispersal from Australia to Africa, but phylogenetic studies to date have included only minimal representatives from each subfamily. Here we greatly increase the level of species sampling of both subfamilies and develop a molecular phylogeny based on one mitochondrial and two nuclear genes. Our results indicate that the broad results of earlier studies are robust to substantially greater taxon sampling, and we infer a divergence date between the two subfamilies in the early Eocene. Dispersal pathways between Africa and Australia during that time are problematic, with several studies suggesting dispersals via the now largely submerged Kerguelen and Crozet Plateaus. Our results contribute another example of a puzzling sister‐clade relationship between African and Australian taxa and indicate the need to better understand southern hemisphere subaerial configurations, including Antarctica, and ocean and wind currents at those times.  相似文献   

19.
The earliest Oligocene (∼33.5 Ma) is marked by a major step in the long-term transition from an ice-free to glaciated world. The transition, characterized by both cooling and ice-sheet growth, triggered a transient but extreme glacial period designated Oi-1. High-resolution isotope records suggest that Oi-1 lasted for roughly 400,000 yr (the duration of magnetochron 13N) before partially abating, and that it was accompanied by an ocean-wide carbon isotope anomaly of ∼0.75‰. One hypothesis relates the carbon isotope anomaly to enhanced export production brought about by climate-induced intensification of wind stress and upwelling, particularly in the Southern Ocean. To understand how this climatic event affected export production in the Southern Ocean, biogenic silica (opal) and carbonate accumulation rates were computed for the sub-polar Indian Ocean using deep-sea cores from ODP Site 744, Kerguelen Plateau. Our findings suggest that net productivity in this region increased by several fold in response to the Oi-1 glaciation. In addition, calcareous primary producers dominant in the Late Eocene were partially replaced by opaline organisms suggesting a trend toward seasonally greater surface divergence and upwelling in this sector of the Southern Ocean. We attribute these changes to intensification of atmospheric/oceanic circulation brought about by high-latitude cooling and the appearance of a full-scale continental ice-sheet on East Antarctica. Higher terrigenous sediment accumulation rates support the idea that wind-induced changes in regional productivity were augmented by an increased supply of glacial dust and debris that provided limiting micro-nutrients (e.g., iron-rich dust particles). We speculate that the rapid changes in biogenic sediment accumulation in the Southern Ocean and other upwelling-dominated regions contributed to the ocean-wide positive carbon isotope anomaly by temporarily increasing the burial rate of organic carbon relative to carbonate carbon. The changes in burial rates, in turn, may have produced a positive feedback on climate by briefly drawing down atmospheric pCO2.  相似文献   

20.
Although Africa was south of the Tethys Sea and originally belonged to the Gondwana, its paleobiogeographical history appears to have been distinct from those of both Gondwana and Laurasia as early as the earliest Cretaceous, perhaps the Late Jurassic. This history has been more complex than the classical one reconstructed in the context of a dual world (Gondwana vs. Laurasia). Geological and paleobiogeographical data show that Africa was isolated from the Mid-Cretaceous (Albian-Aptian) to Early Miocene, i.e., for ca. 75 million years. The isolation of Africa was broken intermittently by discontinuous filter routes that linked it to some other Gondwanan continents (Madagascar, South America, and perhaps India), but mainly to Laurasia. Interchanges with Gondwana were rare and mainly “out-of-Africa” dispersals, whereas interchanges with Laurasia were numerous and bidirectional, although mainly from Laurasia to Africa. Despite these intermittent connections, isolation resulted in remarkable absences, poor diversity, and emergence of endemic taxa in Africa. Mammals suggest that an African faunal province might have appeared by Late Jurassic or earliest Cretaceous times, i.e., before the opening of the South Atlantic. During isolation, Africa was inhabited by vicariant West Gondwanan taxa (i.e., taxa inherited from the former South American-African block) that represent the African autochthonous forms, and by immigrants that entered Africa owing to filter routes. Nearly all, or all immigrants were of Laurasian origin. Trans-Tethyan dispersals between Africa and Laurasia were relatively frequent during the Cretaceous and Paleogene and are documented as early as the earliest Cretaceous or perhaps Late Jurassic, i.e., perhaps by the time of completion of the Tethys between Gondwana and Laurasia. They were permitted by the Mediterranean Tethyan Sill, a discontinuous route that connected Africa to Laurasia and was controlled by sea-level changes. Interchanges first took place between southwestern Europe and Africa, but by the Middle Eocene a second, eastern route — the Iranian route — involved southeastern Europe and southwestern Asia. The Iranian route was apparently the filtering precursor of the definitive connection between Africa and Eurasia. The relationships and successive immigrations of mammal (mostly placental) clades in Africa allow the recognition of five to seven phases of trans-Tethyan dispersals between Africa and Laurasia that range from the Late Cretaceous to the Eocene-Oligocene transition. These Dispersal Phases involve dispersals toward Laurasia and/or toward Africa (immigrations). The immigrations in Africa gave rise to faunal assemblages, the African Faunal Strata (AFSs). All successful and typical African radiations have arisen from these AFSs. We recognize four to six AFSs, each characterized by a faunal association. Even major, old African clades such as Paenungulata or the still controversial Afrotheria, which belong to the oldest known AFS involving placentals, ultimately originated from a Laurasian stem group. Africa was an important center of origin of various placental clades. Their success in Africa is probably related to peculiar African conditions (endemicity, weak competition). Although strongly marked by endemicity, the African placental fauna did not suffer extinctions of major clades when Africa contacted Eurasia. The present geographic configuration began to take shape as early as the Mid-Cretaceous. At that time, the last connections between Africa and other Gondwanan continents began to disappear, whereas Africa was already connected to Eurasia by a comparatively effective route of interchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号